Citation: |
[1] |
E. S. Baykova and A. Faminskii, On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov-Kuznetsov equation, Adv. Differential Equations, 8 (2013), 663-686. |
[2] |
A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.doi: 10.1007/BF00996149. |
[3] |
P. Billingsley, Probability and Measure, $2^{nd}$ edition, John Wiley & Sons Inc., New York, 1986. |
[4] |
J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457-510.doi: 10.1098/rsta.1981.0178. |
[5] |
J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for long waves, In Fluid Dynamics in Astrophysics and Geophysics (Chicago, Ill., 1981), Amer. Math. Soc., 1983, 235-267. |
[6] |
A. de Bouard and A. Debussche, On a stochastic Korteweg-de Vries equation with homogeneous noise, in Séminaire: Équations aux Dérivées Partielles. 2007-2008, École Polytech., Exp. No. V, 2009, 15pp. |
[7] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223. |
[8] |
A. Debussche, N. Glatt-Holtz and and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011),1123-1144.doi: 10.1016/j.physd.2011.03.009. |
[9] |
A. Debussche and J. Printems, Effect of a localized random forcing term on the Korteweg-de Vries equation, J. Comput. Anal. Appl., 3 (2001), 183-206.doi: 10.1023/A:1011596026830. |
[10] |
G. G. Doronin and N. A. Larkin, Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions, Appl. Math. Lett., 27 (2014), 6-10.doi: 10.1016/j.aml.2013.08.010. |
[11] |
A. V. Faminskii, On the nonlocal well-posedness of a mixed problem for the Zakharov-Kuznetsov equation, Sovrem. Mat. Prilozh., (2006), 135-148; Translation in J. Math. Sci. (N. Y.), 147 (2007), 6524-6537.doi: 10.1007/s10958-007-0491-9. |
[12] |
A. V. Faminskii, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation, Electron. J. Differential Equations, (2008), 23pp. |
[13] |
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.doi: 10.1007/BF01192467. |
[14] |
F. Flandoli, An introduction to 3D stochastic fluid dynamics, in SPDE in Hydrodynamic: Recent Progress and Prospects, Springer Berlin/Heidelberg, (2008), 51-150.doi: 10.1007/978-3-540-78493-7_2. |
[15] |
W. Gao and J. Bao, Exact solutions for a $(2+1)$-dimensional stochastic KdV equation, J. Jilin Univ. Sci., 44 (2006), 46-49. |
[16] |
N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14 (2009), 567-600. |
[17] |
I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.doi: 10.1007/BF01203833. |
[18] |
R. Herman and A. Rose, Numerical realizations of solutions of the stochastic KdV equation, Math. Comput. Simulation, 80 (2009), 164-172.doi: 10.1016/j.matcom.2009.06.008. |
[19] |
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatnost. i Primenen., 42 (1997), 209-216.doi: 10.4213/tvp1769. |
[20] |
D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, in Progress in Nonlinear Differential Equations and their Applications (eds. M. Cicognani, FL Colombini and D. Del Santo), Birkaüser, (2013), 183-215. arXiv:1205.5080.doi: 10.1007/978-1-4614-6348-1_10. |
[21] |
E. W. Laedke and K. H. Spatschek, Growth rates of bending solitons, J. Plasma Phys., 26 (1982), 469-484.doi: 10.1017/S0022377800000428. |
[22] |
N. A. Larkin and E. Tronco, Regular solutions of the 2D Zakharov-Kuznetsov equation on a half-strip, J. Differential Equations, 254 (2013), 81-101.doi: 10.1016/j.jde.2012.08.023. |
[23] |
Q. Liu, A modified Jacobi elliptic function expansion method and its application to Wick-type stochastic KdV equation, Chaos Solitons Fractals, 32 (2007), 1215-1223.doi: 10.1016/j.chaos.2005.11.043. |
[24] |
R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310.doi: 10.1137/S0036141002409167. |
[25] |
M. Ondreját, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041-1091.doi: 10.1214/EJP.v15-789. |
[26] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007. |
[27] |
J. C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Differential Equations, 15 (2010), 1001-1031. |
[28] |
J. C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, J. Math. Phys., 53 (2012), 115612, 29.doi: 10.1063/1.4752102. |
[29] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, $2^{nd}$ edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.doi: 10.1137/1.9781611970050. |
[30] |
T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11 (1971), 155-167. |
[31] |
V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Sov. Phys. JETP, 30 (1974), 285-286. |
[32] |
S. Zhang and H. Q. Zhang, Fan sub-equation method for Wick-type stochastic partial differential equations, Phys. Lett. A, 374 (2010), 4180-4187.doi: 10.1016/j.physleta.2010.08.023. |