June  2014, 19(4): 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

Complete classification of global dynamics of a virus model with immune responses

1. 

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

Received  April 2013 Revised  July 2013 Published  April 2014

A virus dynamics model for HIV or HBV is studied, which incorporates saturation effects of immune responses and an intracellular time delay. With the aid of persistence theory and Liapunov method, it is shown that the global stability of the model is totally determined by the reproductive numbers for viral infection, for CTL immune response, for antibody immune response, for antibody invasion and for CTL immune invasion. The results preclude the complicated behaviors such as the backward bifurcations and Hopf bifurcations which may be induced by saturation factors and a time delay.
Citation: Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087
References:
[1]

L. Cai and X. Li, Stability and Hopf bifurcation in a delayed model for HIV infection of $CD4^{+}T $ cells,, Chaos, 42 (2009), 1.  doi: 10.1016/j.chaos.2008.04.048.  Google Scholar

[2]

R. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of $CD4^{+}T$ cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[3]

R. De Boer, Which of our modeling predictions are robust?, Plos Computational Biology, 8 (2012).  doi: 10.1371/journal.pcbi.1002593.  Google Scholar

[4]

O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[5]

T. Gao, W. Wang and X. Liu, Mathematical analysis of an HIV model with impulsive antiretroviral drug doses,, Mathematics and Computers in Simulation, 82 (2011), 653.  doi: 10.1016/j.matcom.2011.10.007.  Google Scholar

[6]

J. K. Hale and S. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993).   Google Scholar

[7]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[8]

G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics,, Japanese J. Indust. Appl. Math., 28 (2011), 383.  doi: 10.1007/s13160-011-0045-x.  Google Scholar

[9]

S. Iwami, T. Miura, S. Nakaoka and Y.Takeuchi, Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds,, J. Theor. Biol., 260 (2009), 490.  doi: 10.1016/j.jtbi.2009.06.023.  Google Scholar

[10]

S. Iwami, S. Nakaoka and Y. Takeuchi, Viral diversity limits immune diversity in asymptomatic phase of HIV infection,, Theoretical Population Biology, 73 (2008), 332.  doi: 10.1016/j.tpb.2008.01.003.  Google Scholar

[11]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[12]

T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance,, Proc. Natl. Acad. Sci. USA, 95 (1998), 11514.  doi: 10.1073/pnas.95.20.11514.  Google Scholar

[13]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[14]

D. Li and W. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683.  doi: 10.1016/j.jmaa.2007.02.006.  Google Scholar

[15]

J. Li, Y. Xiao , F. Zhang and Y. Yang, An algebraic approach to proving the global stability of a class of epidemic models,, Nonlinear Analysis: Real World Applications, 13 (2012), 2006.  doi: 10.1016/j.nonrwa.2011.12.022.  Google Scholar

[16]

J. Li, Y. Yang and Y. Zhou, Global stability of an epidemic model with latent stage and vaccination,, Nonlinear Analysis: Real World Applications, 12 (2011), 2163.  doi: 10.1016/j.nonrwa.2010.12.030.  Google Scholar

[17]

M. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bulletin of Mathematical Biology, 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[18]

M. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of $CD4^{+}T$ cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080.  doi: 10.1016/j.nonrwa.2011.02.026.  Google Scholar

[19]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Eng., 7 (2010), 837.  doi: 10.3934/mbe.2010.7.837.  Google Scholar

[20]

P. Nelson, J. Mittler and A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters,, Journal of Aids, 26 (2001), 405.  doi: 10.1097/00126334-200104150-00002.  Google Scholar

[21]

M. Nowak and R. May, Viral Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).   Google Scholar

[22]

M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in hepatitis B virus infection,, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[23]

A. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[24]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.  doi: 10.1126/science.271.5255.1582.  Google Scholar

[25]

H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796.   Google Scholar

[26]

K. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Mathematical Biosciences, 235 (2012), 98.  doi: 10.1016/j.mbs.2011.11.002.  Google Scholar

[27]

T. Revilla and G. García-Ramos, Fighting a virus with a virus: A dynamic model for HIV-1 therapy,, Math. Biosci., 185 (2003), 191.  doi: 10.1016/S0025-5564(03)00091-9.  Google Scholar

[28]

B. Reddy and J. Yin, Quantitative intracellular kinetics of HIV type 1,, AIDS Res. Hum. Retrovir., 15 (1999), 273.  doi: 10.1089/088922299311457.  Google Scholar

[29]

L. Rong and A. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips,, Journal of Theoretical Biology, 260 (2009), 308.  doi: 10.1016/j.jtbi.2009.06.011.  Google Scholar

[30]

L. Rong, M. Gilchristb, Z. Feng and A. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, Journal of Theoretical Biology, 4 (2007), 804.  doi: 10.1016/j.jtbi.2007.04.014.  Google Scholar

[31]

L. Rong, Z. Feng and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment,, Bulletin of Mathematical Biology, 69 (2007), 2027.  doi: 10.1007/s11538-007-9203-3.  Google Scholar

[32]

H. Shu and L. Wang, Role of CD4+T-cell proliferation in HIV infection under antiretroviral therapy,, J. Math. Anal. Appl., 394 (2012), 529.  doi: 10.1016/j.jmaa.2012.05.027.  Google Scholar

[33]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[34]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[35]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Comput. Math. Appl., 51 (2006), 1593.  doi: 10.1016/j.camwa.2005.07.020.  Google Scholar

[36]

K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solutions Fractals, 28 (2006), 90.  doi: 10.1016/j.chaos.2005.05.003.  Google Scholar

[37]

K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response,, Physica D, 226 (2007), 197.  doi: 10.1016/j.physd.2006.12.001.  Google Scholar

[38]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of $CD4^{+}$ T cells,, Mathematical Biosciences, 200 (2006), 44.  doi: 10.1016/j.mbs.2005.12.026.  Google Scholar

[39]

X. Wang and W. Wang, An HIV infection model based on a vectored immunoprophylaxis experiment,, Journal of Theoretical Biology, 313 (2012), 127.  doi: 10.1016/j.jtbi.2012.08.023.  Google Scholar

[40]

X. Wang, W. Wang and P. Liu, Global properties of an HIV dynamic model with latent infection and CTL immune responses,, Journal of Southwest university (Nature Science Edition), 7 (2013), 1.   Google Scholar

[41]

Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model,, Mathematical Biosciences, 219 (2009), 104.  doi: 10.1016/j.mbs.2009.03.003.  Google Scholar

[42]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743.  doi: 10.1099/vir.0.19118-0.  Google Scholar

[43]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune response and delay,, Discrete and continutious dynamical systems series B, 17 (2012), 401.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[44]

Y. Yang and Y. Xiao, Threshold dynamics for an HIV model in periodic environments,, J. Math. Anal. Appl., 361 (2010), 59.  doi: 10.1016/j.jmaa.2009.09.012.  Google Scholar

[45]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).   Google Scholar

[46]

X. Zhou, X. Song and X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay,, Applied Mathematics and Computation, 199 (2008), 23.  doi: 10.1016/j.amc.2007.09.030.  Google Scholar

[47]

H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay,, Computers and Mathematics with Applications, 62 (2011), 3091.  doi: 10.1016/j.camwa.2011.08.022.  Google Scholar

show all references

References:
[1]

L. Cai and X. Li, Stability and Hopf bifurcation in a delayed model for HIV infection of $CD4^{+}T $ cells,, Chaos, 42 (2009), 1.  doi: 10.1016/j.chaos.2008.04.048.  Google Scholar

[2]

R. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of $CD4^{+}T$ cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[3]

R. De Boer, Which of our modeling predictions are robust?, Plos Computational Biology, 8 (2012).  doi: 10.1371/journal.pcbi.1002593.  Google Scholar

[4]

O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[5]

T. Gao, W. Wang and X. Liu, Mathematical analysis of an HIV model with impulsive antiretroviral drug doses,, Mathematics and Computers in Simulation, 82 (2011), 653.  doi: 10.1016/j.matcom.2011.10.007.  Google Scholar

[6]

J. K. Hale and S. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993).   Google Scholar

[7]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[8]

G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics,, Japanese J. Indust. Appl. Math., 28 (2011), 383.  doi: 10.1007/s13160-011-0045-x.  Google Scholar

[9]

S. Iwami, T. Miura, S. Nakaoka and Y.Takeuchi, Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds,, J. Theor. Biol., 260 (2009), 490.  doi: 10.1016/j.jtbi.2009.06.023.  Google Scholar

[10]

S. Iwami, S. Nakaoka and Y. Takeuchi, Viral diversity limits immune diversity in asymptomatic phase of HIV infection,, Theoretical Population Biology, 73 (2008), 332.  doi: 10.1016/j.tpb.2008.01.003.  Google Scholar

[11]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[12]

T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance,, Proc. Natl. Acad. Sci. USA, 95 (1998), 11514.  doi: 10.1073/pnas.95.20.11514.  Google Scholar

[13]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[14]

D. Li and W. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683.  doi: 10.1016/j.jmaa.2007.02.006.  Google Scholar

[15]

J. Li, Y. Xiao , F. Zhang and Y. Yang, An algebraic approach to proving the global stability of a class of epidemic models,, Nonlinear Analysis: Real World Applications, 13 (2012), 2006.  doi: 10.1016/j.nonrwa.2011.12.022.  Google Scholar

[16]

J. Li, Y. Yang and Y. Zhou, Global stability of an epidemic model with latent stage and vaccination,, Nonlinear Analysis: Real World Applications, 12 (2011), 2163.  doi: 10.1016/j.nonrwa.2010.12.030.  Google Scholar

[17]

M. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bulletin of Mathematical Biology, 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[18]

M. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of $CD4^{+}T$ cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080.  doi: 10.1016/j.nonrwa.2011.02.026.  Google Scholar

[19]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Eng., 7 (2010), 837.  doi: 10.3934/mbe.2010.7.837.  Google Scholar

[20]

P. Nelson, J. Mittler and A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters,, Journal of Aids, 26 (2001), 405.  doi: 10.1097/00126334-200104150-00002.  Google Scholar

[21]

M. Nowak and R. May, Viral Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).   Google Scholar

[22]

M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in hepatitis B virus infection,, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[23]

A. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[24]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.  doi: 10.1126/science.271.5255.1582.  Google Scholar

[25]

H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796.   Google Scholar

[26]

K. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Mathematical Biosciences, 235 (2012), 98.  doi: 10.1016/j.mbs.2011.11.002.  Google Scholar

[27]

T. Revilla and G. García-Ramos, Fighting a virus with a virus: A dynamic model for HIV-1 therapy,, Math. Biosci., 185 (2003), 191.  doi: 10.1016/S0025-5564(03)00091-9.  Google Scholar

[28]

B. Reddy and J. Yin, Quantitative intracellular kinetics of HIV type 1,, AIDS Res. Hum. Retrovir., 15 (1999), 273.  doi: 10.1089/088922299311457.  Google Scholar

[29]

L. Rong and A. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips,, Journal of Theoretical Biology, 260 (2009), 308.  doi: 10.1016/j.jtbi.2009.06.011.  Google Scholar

[30]

L. Rong, M. Gilchristb, Z. Feng and A. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, Journal of Theoretical Biology, 4 (2007), 804.  doi: 10.1016/j.jtbi.2007.04.014.  Google Scholar

[31]

L. Rong, Z. Feng and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment,, Bulletin of Mathematical Biology, 69 (2007), 2027.  doi: 10.1007/s11538-007-9203-3.  Google Scholar

[32]

H. Shu and L. Wang, Role of CD4+T-cell proliferation in HIV infection under antiretroviral therapy,, J. Math. Anal. Appl., 394 (2012), 529.  doi: 10.1016/j.jmaa.2012.05.027.  Google Scholar

[33]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[34]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[35]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Comput. Math. Appl., 51 (2006), 1593.  doi: 10.1016/j.camwa.2005.07.020.  Google Scholar

[36]

K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solutions Fractals, 28 (2006), 90.  doi: 10.1016/j.chaos.2005.05.003.  Google Scholar

[37]

K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response,, Physica D, 226 (2007), 197.  doi: 10.1016/j.physd.2006.12.001.  Google Scholar

[38]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of $CD4^{+}$ T cells,, Mathematical Biosciences, 200 (2006), 44.  doi: 10.1016/j.mbs.2005.12.026.  Google Scholar

[39]

X. Wang and W. Wang, An HIV infection model based on a vectored immunoprophylaxis experiment,, Journal of Theoretical Biology, 313 (2012), 127.  doi: 10.1016/j.jtbi.2012.08.023.  Google Scholar

[40]

X. Wang, W. Wang and P. Liu, Global properties of an HIV dynamic model with latent infection and CTL immune responses,, Journal of Southwest university (Nature Science Edition), 7 (2013), 1.   Google Scholar

[41]

Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model,, Mathematical Biosciences, 219 (2009), 104.  doi: 10.1016/j.mbs.2009.03.003.  Google Scholar

[42]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743.  doi: 10.1099/vir.0.19118-0.  Google Scholar

[43]

Y. Yan and W. Wang, Global stability of a five-dimensional model with immune response and delay,, Discrete and continutious dynamical systems series B, 17 (2012), 401.  doi: 10.3934/dcdsb.2012.17.401.  Google Scholar

[44]

Y. Yang and Y. Xiao, Threshold dynamics for an HIV model in periodic environments,, J. Math. Anal. Appl., 361 (2010), 59.  doi: 10.1016/j.jmaa.2009.09.012.  Google Scholar

[45]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).   Google Scholar

[46]

X. Zhou, X. Song and X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay,, Applied Mathematics and Computation, 199 (2008), 23.  doi: 10.1016/j.amc.2007.09.030.  Google Scholar

[47]

H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay,, Computers and Mathematics with Applications, 62 (2011), 3091.  doi: 10.1016/j.camwa.2011.08.022.  Google Scholar

[1]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[2]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[3]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[4]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[6]

Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020363

[7]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[8]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[9]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[10]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[11]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[12]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[16]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[17]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[18]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[19]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]