June  2014, 19(4): 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates

1. 

Institute of Mathematics, Academia Sinica, Taipei, 10617, Taiwan

2. 

Department of Applied Mathematics and Center of Mathematical Modeling, and Scientific Computing, National Chiao Tung University, Hsinchu, 30010, Taiwan

Received  October 2012 Revised  January 2014 Published  April 2014

We justify some characterizations of the ground states of spin-1 Bose-Einstein condensates exhibited from numerical simulations. For ferromagnetic systems, we show the validity of the single-mode approximation (SMA). For an antiferromagnetic system with nonzero magnetization, we prove the vanishing of the $m_F=0$ component. In the end of the paper some remaining degenerate situations are also discussed. The proofs of the main results are all based on a simple observation, that a redistribution of masses among different components will reduce the kinetic energy.
Citation: Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119
References:
[1]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198. doi: 10.1126/science.269.5221.198. Google Scholar

[2]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asian J. Appl. Math, 1 (2011), 49. doi: 10.4208/eajam.190310.170510a. Google Scholar

[3]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925. doi: 10.1137/070698488. Google Scholar

[4]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001). Google Scholar

[5]

F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces,, J. Funct. Anal., 80 (1988), 60. doi: 10.1016/0022-1236(88)90065-1. Google Scholar

[6]

J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces,, Journal d'Analyse Mathématique, 80 (2000), 37. doi: 10.1007/BF02791533. Google Scholar

[7]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,, Phys. Rev. Lett., 75 (1995), 1687. doi: 10.1103/PhysRevLett.75.1687. Google Scholar

[8]

D. Cao, I.-L. Chern and J. Wei, On ground state of spinor Bose-Einstein condensates,, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 427. doi: 10.1007/s00030-011-0102-9. Google Scholar

[9]

J.-H. Chen, I.-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods,, J. Comput. Phys., 230 (2011), 2222. doi: 10.1016/j.jcp.2010.11.048. Google Scholar

[10]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463. doi: 10.1103/RevModPhys.71.463. Google Scholar

[11]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1103/PhysRevLett.75.3969. Google Scholar

[12]

L.-M. Duan, J. I. Cirac and P. Zoller, Quantum entanglement in spinor Bose-Einstein condensates,, Phys. Rev. A, 65 (2002). doi: 10.1103/PhysRevA.65.033619. Google Scholar

[13]

E. V. Goldstein and P. Meystre, Quantum theory of atomic four-wave mixing in Bose-Einstein condensates,, Phys. Rev. A, 59 (1999), 3896. doi: 10.1103/PhysRevA.59.3896. Google Scholar

[14]

A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the $f=2$ state in a large-volume optical trap,, Phys. Rev. Lett., 90 (2003). Google Scholar

[15]

E. P. Gross, Structure of a quantized vortex in boson systems,, Il Nuovo Cimento Series 10, 20 (1961), 454. doi: 10.1007/BF02731494. Google Scholar

[16]

T.-L. Ho, Spinor bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742. doi: 10.1103/PhysRevLett.81.742. Google Scholar

[17]

T.-L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 bose gas,, Phys. Rev. Lett., 84 (2000), 4031. doi: 10.1103/PhysRevLett.84.4031. Google Scholar

[18]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257. doi: 10.1103/PhysRevLett.81.5257. Google Scholar

[19]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics,, 2nd edition, (2001). Google Scholar

[20]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.043602. Google Scholar

[21]

L.-R. Lin, Mass Redistribution and Its Applications to the Ground States of Spin-1 Bose-Einstein Condensates,, Ph.D thesis, (2013). Google Scholar

[22]

H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur and W. Ketterle, Observation of metastable states in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 82 (1999), 2228. doi: 10.1103/PhysRevLett.82.2228. Google Scholar

[23]

T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,, Journal of the Physical Society of Japan, 67 (1998), 1822. doi: 10.1143/JPSJ.67.1822. Google Scholar

[24]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451. Google Scholar

[25]

H. Pu, C. K. Law and N. P. Bigelow, Complex quantum gases: spinor Bose-Einstein condensates of trapped atomic vapors,, Physica B: Condensed Matter, 280 (2000), 27. doi: 10.1016/S0921-4526(99)01429-5. Google Scholar

[26]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-mixing dynamics of a spinor Bose-Einstein condensate,, Phys. Rev. A, 60 (1999), 1463. doi: 10.1103/PhysRevA.60.1463. Google Scholar

[27]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger and W. Ketterle, Optical confinement of a Bose-Einstein condensate,, Phys. Rev. Lett., 80 (1998), 2027. doi: 10.1103/PhysRevLett.80.2027. Google Scholar

[28]

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates,, Nature, 396 (1998), 345. Google Scholar

[29]

S. Yi, O. E. Müstecapliǧlu, C. P. Sun and L. You, Single-mode approximation in a spinor-1 atomic condensate,, Phys. Rev. A, 66 (2002). doi: 10.1103/PhysRevA.66.011601. Google Scholar

show all references

References:
[1]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198. doi: 10.1126/science.269.5221.198. Google Scholar

[2]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction,, East Asian J. Appl. Math, 1 (2011), 49. doi: 10.4208/eajam.190310.170510a. Google Scholar

[3]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow,, SIAM J. Sci. Comput., 30 (2008), 1925. doi: 10.1137/070698488. Google Scholar

[4]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate,, Phys. Rev. Lett., 87 (2001). Google Scholar

[5]

F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces,, J. Funct. Anal., 80 (1988), 60. doi: 10.1016/0022-1236(88)90065-1. Google Scholar

[6]

J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces,, Journal d'Analyse Mathématique, 80 (2000), 37. doi: 10.1007/BF02791533. Google Scholar

[7]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,, Phys. Rev. Lett., 75 (1995), 1687. doi: 10.1103/PhysRevLett.75.1687. Google Scholar

[8]

D. Cao, I.-L. Chern and J. Wei, On ground state of spinor Bose-Einstein condensates,, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 427. doi: 10.1007/s00030-011-0102-9. Google Scholar

[9]

J.-H. Chen, I.-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods,, J. Comput. Phys., 230 (2011), 2222. doi: 10.1016/j.jcp.2010.11.048. Google Scholar

[10]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463. doi: 10.1103/RevModPhys.71.463. Google Scholar

[11]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1103/PhysRevLett.75.3969. Google Scholar

[12]

L.-M. Duan, J. I. Cirac and P. Zoller, Quantum entanglement in spinor Bose-Einstein condensates,, Phys. Rev. A, 65 (2002). doi: 10.1103/PhysRevA.65.033619. Google Scholar

[13]

E. V. Goldstein and P. Meystre, Quantum theory of atomic four-wave mixing in Bose-Einstein condensates,, Phys. Rev. A, 59 (1999), 3896. doi: 10.1103/PhysRevA.59.3896. Google Scholar

[14]

A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the $f=2$ state in a large-volume optical trap,, Phys. Rev. Lett., 90 (2003). Google Scholar

[15]

E. P. Gross, Structure of a quantized vortex in boson systems,, Il Nuovo Cimento Series 10, 20 (1961), 454. doi: 10.1007/BF02731494. Google Scholar

[16]

T.-L. Ho, Spinor bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998), 742. doi: 10.1103/PhysRevLett.81.742. Google Scholar

[17]

T.-L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 bose gas,, Phys. Rev. Lett., 84 (2000), 4031. doi: 10.1103/PhysRevLett.84.4031. Google Scholar

[18]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5257. doi: 10.1103/PhysRevLett.81.5257. Google Scholar

[19]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics,, 2nd edition, (2001). Google Scholar

[20]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.043602. Google Scholar

[21]

L.-R. Lin, Mass Redistribution and Its Applications to the Ground States of Spin-1 Bose-Einstein Condensates,, Ph.D thesis, (2013). Google Scholar

[22]

H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur and W. Ketterle, Observation of metastable states in spinor Bose-Einstein condensates,, Phys. Rev. Lett., 82 (1999), 2228. doi: 10.1103/PhysRevLett.82.2228. Google Scholar

[23]

T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,, Journal of the Physical Society of Japan, 67 (1998), 1822. doi: 10.1143/JPSJ.67.1822. Google Scholar

[24]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451. Google Scholar

[25]

H. Pu, C. K. Law and N. P. Bigelow, Complex quantum gases: spinor Bose-Einstein condensates of trapped atomic vapors,, Physica B: Condensed Matter, 280 (2000), 27. doi: 10.1016/S0921-4526(99)01429-5. Google Scholar

[26]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-mixing dynamics of a spinor Bose-Einstein condensate,, Phys. Rev. A, 60 (1999), 1463. doi: 10.1103/PhysRevA.60.1463. Google Scholar

[27]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger and W. Ketterle, Optical confinement of a Bose-Einstein condensate,, Phys. Rev. Lett., 80 (1998), 2027. doi: 10.1103/PhysRevLett.80.2027. Google Scholar

[28]

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates,, Nature, 396 (1998), 345. Google Scholar

[29]

S. Yi, O. E. Müstecapliǧlu, C. P. Sun and L. You, Single-mode approximation in a spinor-1 atomic condensate,, Phys. Rev. A, 66 (2002). doi: 10.1103/PhysRevA.66.011601. Google Scholar

[1]

Josselin Garnier. The role of evanescent modes in randomly perturbed single-mode waveguides. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 455-472. doi: 10.3934/dcdsb.2007.8.455

[2]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[3]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[4]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[5]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[6]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[7]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[8]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[9]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[10]

Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947

[11]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[12]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[13]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[14]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[15]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[16]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019131

[17]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[18]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931

[19]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[20]

Azmy S. Ackleh, Keng Deng, Qihua Huang. Difference approximation for an amphibian juvenile-adult dispersal mode. Conference Publications, 2011, 2011 (Special) : 1-12. doi: 10.3934/proc.2011.2011.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]