June  2014, 19(4): 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates

1. 

Institute of Mathematics, Academia Sinica, Taipei, 10617, Taiwan

2. 

Department of Applied Mathematics and Center of Mathematical Modeling, and Scientific Computing, National Chiao Tung University, Hsinchu, 30010, Taiwan

Received  October 2012 Revised  January 2014 Published  April 2014

We justify some characterizations of the ground states of spin-1 Bose-Einstein condensates exhibited from numerical simulations. For ferromagnetic systems, we show the validity of the single-mode approximation (SMA). For an antiferromagnetic system with nonzero magnetization, we prove the vanishing of the $m_F=0$ component. In the end of the paper some remaining degenerate situations are also discussed. The proofs of the main results are all based on a simple observation, that a redistribution of masses among different components will reduce the kinetic energy.
Citation: Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119
References:
[1]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201. doi: 10.1126/science.269.5221.198.

[2]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian J. Appl. Math, 1 (2011), 49-81. doi: 10.4208/eajam.190310.170510a.

[3]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput., 30 (2008), 1925-1948. doi: 10.1137/070698488.

[4]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate, Phys. Rev. Lett., 87 (2001), 010404.

[5]

F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75. doi: 10.1016/0022-1236(88)90065-1.

[6]

J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces, Journal d'Analyse Mathématique, 80 (2000), 37-86. doi: 10.1007/BF02791533.

[7]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75 (1995), 1687-1690. doi: 10.1103/PhysRevLett.75.1687.

[8]

D. Cao, I.-L. Chern and J. Wei, On ground state of spinor Bose-Einstein condensates, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 427-445. doi: 10.1007/s00030-011-0102-9.

[9]

J.-H. Chen, I.-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods, J. Comput. Phys., 230 (2011), 2222-2236. doi: 10.1016/j.jcp.2010.11.048.

[10]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512. doi: 10.1103/RevModPhys.71.463.

[11]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973. doi: 10.1103/PhysRevLett.75.3969.

[12]

L.-M. Duan, J. I. Cirac and P. Zoller, Quantum entanglement in spinor Bose-Einstein condensates, Phys. Rev. A, 65 (2002), 033619. doi: 10.1103/PhysRevA.65.033619.

[13]

E. V. Goldstein and P. Meystre, Quantum theory of atomic four-wave mixing in Bose-Einstein condensates, Phys. Rev. A, 59 (1999), 3896-3901. doi: 10.1103/PhysRevA.59.3896.

[14]

A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the $f=2$ state in a large-volume optical trap, Phys. Rev. Lett., 90 (2003), 090401.

[15]

E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento Series 10, 20 (1961), 454-477. doi: 10.1007/BF02731494.

[16]

T.-L. Ho, Spinor bose condensates in optical traps, Phys. Rev. Lett., 81 (1998), 742-745. doi: 10.1103/PhysRevLett.81.742.

[17]

T.-L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 bose gas, Phys. Rev. Lett., 84 (2000), 4031-4034. doi: 10.1103/PhysRevLett.84.4031.

[18]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5257-5261. doi: 10.1103/PhysRevLett.81.5257.

[19]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[20]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602. doi: 10.1103/PhysRevA.61.043602.

[21]

L.-R. Lin, Mass Redistribution and Its Applications to the Ground States of Spin-1 Bose-Einstein Condensates, Ph.D thesis, National Taiwan University, 2013.

[22]

H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur and W. Ketterle, Observation of metastable states in spinor Bose-Einstein condensates, Phys. Rev. Lett., 82 (1999), 2228-2231. doi: 10.1103/PhysRevLett.82.2228.

[23]

T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, Journal of the Physical Society of Japan, 67 (1998), 1822-1825. doi: 10.1143/JPSJ.67.1822.

[24]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, 13 (1961), 451-454.

[25]

H. Pu, C. K. Law and N. P. Bigelow, Complex quantum gases: spinor Bose-Einstein condensates of trapped atomic vapors, Physica B: Condensed Matter, 280 (2000), 27-31. doi: 10.1016/S0921-4526(99)01429-5.

[26]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-mixing dynamics of a spinor Bose-Einstein condensate, Phys. Rev. A, 60 (1999), 1463-1470. doi: 10.1103/PhysRevA.60.1463.

[27]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger and W. Ketterle, Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett., 80 (1998), 2027-2030. doi: 10.1103/PhysRevLett.80.2027.

[28]

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature, 396 (1998), 345-348.

[29]

S. Yi, O. E. Müstecapliǧlu, C. P. Sun and L. You, Single-mode approximation in a spinor-1 atomic condensate, Phys. Rev. A, 66 (2002), 011601. doi: 10.1103/PhysRevA.66.011601.

show all references

References:
[1]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201. doi: 10.1126/science.269.5221.198.

[2]

W. Bao and Y. Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian J. Appl. Math, 1 (2011), 49-81. doi: 10.4208/eajam.190310.170510a.

[3]

W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput., 30 (2008), 1925-1948. doi: 10.1137/070698488.

[4]

M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate, Phys. Rev. Lett., 87 (2001), 010404.

[5]

F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75. doi: 10.1016/0022-1236(88)90065-1.

[6]

J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces, Journal d'Analyse Mathématique, 80 (2000), 37-86. doi: 10.1007/BF02791533.

[7]

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75 (1995), 1687-1690. doi: 10.1103/PhysRevLett.75.1687.

[8]

D. Cao, I.-L. Chern and J. Wei, On ground state of spinor Bose-Einstein condensates, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 427-445. doi: 10.1007/s00030-011-0102-9.

[9]

J.-H. Chen, I.-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods, J. Comput. Phys., 230 (2011), 2222-2236. doi: 10.1016/j.jcp.2010.11.048.

[10]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512. doi: 10.1103/RevModPhys.71.463.

[11]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973. doi: 10.1103/PhysRevLett.75.3969.

[12]

L.-M. Duan, J. I. Cirac and P. Zoller, Quantum entanglement in spinor Bose-Einstein condensates, Phys. Rev. A, 65 (2002), 033619. doi: 10.1103/PhysRevA.65.033619.

[13]

E. V. Goldstein and P. Meystre, Quantum theory of atomic four-wave mixing in Bose-Einstein condensates, Phys. Rev. A, 59 (1999), 3896-3901. doi: 10.1103/PhysRevA.59.3896.

[14]

A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the $f=2$ state in a large-volume optical trap, Phys. Rev. Lett., 90 (2003), 090401.

[15]

E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento Series 10, 20 (1961), 454-477. doi: 10.1007/BF02731494.

[16]

T.-L. Ho, Spinor bose condensates in optical traps, Phys. Rev. Lett., 81 (1998), 742-745. doi: 10.1103/PhysRevLett.81.742.

[17]

T.-L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 bose gas, Phys. Rev. Lett., 84 (2000), 4031-4034. doi: 10.1103/PhysRevLett.84.4031.

[18]

C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5257-5261. doi: 10.1103/PhysRevLett.81.5257.

[19]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[20]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602. doi: 10.1103/PhysRevA.61.043602.

[21]

L.-R. Lin, Mass Redistribution and Its Applications to the Ground States of Spin-1 Bose-Einstein Condensates, Ph.D thesis, National Taiwan University, 2013.

[22]

H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur and W. Ketterle, Observation of metastable states in spinor Bose-Einstein condensates, Phys. Rev. Lett., 82 (1999), 2228-2231. doi: 10.1103/PhysRevLett.82.2228.

[23]

T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, Journal of the Physical Society of Japan, 67 (1998), 1822-1825. doi: 10.1143/JPSJ.67.1822.

[24]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, 13 (1961), 451-454.

[25]

H. Pu, C. K. Law and N. P. Bigelow, Complex quantum gases: spinor Bose-Einstein condensates of trapped atomic vapors, Physica B: Condensed Matter, 280 (2000), 27-31. doi: 10.1016/S0921-4526(99)01429-5.

[26]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-mixing dynamics of a spinor Bose-Einstein condensate, Phys. Rev. A, 60 (1999), 1463-1470. doi: 10.1103/PhysRevA.60.1463.

[27]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger and W. Ketterle, Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett., 80 (1998), 2027-2030. doi: 10.1103/PhysRevLett.80.2027.

[28]

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature, 396 (1998), 345-348.

[29]

S. Yi, O. E. Müstecapliǧlu, C. P. Sun and L. You, Single-mode approximation in a spinor-1 atomic condensate, Phys. Rev. A, 66 (2002), 011601. doi: 10.1103/PhysRevA.66.011601.

[1]

Josselin Garnier. The role of evanescent modes in randomly perturbed single-mode waveguides. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 455-472. doi: 10.3934/dcdsb.2007.8.455

[2]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[3]

Takahisa Inui, Nobu Kishimoto, Kuranosuke Nishimura. Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6299-6353. doi: 10.3934/dcds.2019275

[4]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[5]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[6]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[7]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[8]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[9]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[10]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[11]

Mohammad Ali Husaini, Chuangye Liu. Synchronized and ground-state solutions to a coupled Schrödinger system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 639-667. doi: 10.3934/cpaa.2021192

[12]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[13]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[14]

Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947

[15]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[16]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[17]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[18]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[19]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[20]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]