-
Previous Article
Persistence in some periodic epidemic models with infection age or constant periods of infection
- DCDS-B Home
- This Issue
-
Next Article
On the limit cycles of the Floquet differential equation
Multistability and localized attractors in a dissipative discrete NLS equation
1. | Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. |
2. | Departamento de Matemática y Mecánica, I.I.M.A.S - U.N.A.M., Apdo. Postal 20-726, 01000 México D. F. |
References:
[1] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967.
doi: 10.1016/j.na.2009.09.037. |
[2] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A gradient-like nonautonomous evolution process,, Int. J. of Bifurcation and Chaos 20, 9 (2010), 2751.
doi: 10.1142/S0218127410027337. |
[3] |
A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and stable manifolds,, J. Diff. Equations, 233 (2007), 622.
doi: 10.1016/j.jde.2006.08.009. |
[4] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Springer, (2013).
doi: 10.1007/978-1-4614-4581-4. |
[5] |
D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides,, Opt. Lett. 18 (1988), 18 (1988), 794.
doi: 10.1364/OL.13.000794. |
[6] |
S. Gersgorin, Über die Abgrenzung der Eigenwerte einer Matrix,, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk, (1931), 74. Google Scholar |
[7] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Math. Soc., (1989).
|
[8] |
P. Hartman, Ordinary Differential Equations,, SIAM, (2002).
doi: 10.1137/1.9780898719222. |
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).
|
[10] |
Y. V. Kartashov, V. V. Konotop and V. A. Visloukh, Two-dimensional dissipative solitons supported by localized gain,, Opt. Lett., 36 (2011), 82.
doi: 10.1364/OL.36.000082. |
[11] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, American Math. Soc., (2011).
|
[12] |
C. K. Lam, B. A. Malomed, K. W. Chow and P. K. A. Wai, Spatial solitons supported by localized gain in nonlinear optical waveguides,, Eur. Phys. J. Special Topics, 173 (2009), 233.
doi: 10.1140/epjst/e2009-01076-8. |
[13] |
R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623.
doi: 10.1088/0951-7715/7/6/006. |
[14] |
P. Panayotaros, Continuation of normal modes in finite NLS lattices,, Phys. Lett. A, 374 (2010), 3912.
doi: 10.1016/j.physleta.2010.07.022. |
[15] |
P. Panayotaros and A. Aceves, Stabilization of coherent breathers in perturbed Hamiltonian coupled oscillators,, Phys. Lett. A, 375 (2011), 3964.
doi: 10.1016/j.physleta.2011.09.019. |
[16] |
Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Euro. Math. Soc., (2004).
doi: 10.4171/003. |
[17] |
M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems,, Lect. Notes Math. 1907, (1907).
doi: 10.1007/978-3-540-71189-6. |
[18] |
M. O. Williams, C. W. McGrath and J. N. Kutz, Light-bullet routing and control with planar waveguide arrays,, Opt. Express, 18 (2010), 11671.
doi: 10.1364/OE.18.011671. |
[19] |
D. V. Zezyulin and V. V. Konotop, Nonlinear modes in finite-dimensional PT-symmetric systems,, Phys. Rev. Lett, 108 (2012).
doi: 10.1103/PhysRevLett.108.213906. |
show all references
References:
[1] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967.
doi: 10.1016/j.na.2009.09.037. |
[2] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A gradient-like nonautonomous evolution process,, Int. J. of Bifurcation and Chaos 20, 9 (2010), 2751.
doi: 10.1142/S0218127410027337. |
[3] |
A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and stable manifolds,, J. Diff. Equations, 233 (2007), 622.
doi: 10.1016/j.jde.2006.08.009. |
[4] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Springer, (2013).
doi: 10.1007/978-1-4614-4581-4. |
[5] |
D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides,, Opt. Lett. 18 (1988), 18 (1988), 794.
doi: 10.1364/OL.13.000794. |
[6] |
S. Gersgorin, Über die Abgrenzung der Eigenwerte einer Matrix,, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk, (1931), 74. Google Scholar |
[7] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Math. Soc., (1989).
|
[8] |
P. Hartman, Ordinary Differential Equations,, SIAM, (2002).
doi: 10.1137/1.9780898719222. |
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).
|
[10] |
Y. V. Kartashov, V. V. Konotop and V. A. Visloukh, Two-dimensional dissipative solitons supported by localized gain,, Opt. Lett., 36 (2011), 82.
doi: 10.1364/OL.36.000082. |
[11] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, American Math. Soc., (2011).
|
[12] |
C. K. Lam, B. A. Malomed, K. W. Chow and P. K. A. Wai, Spatial solitons supported by localized gain in nonlinear optical waveguides,, Eur. Phys. J. Special Topics, 173 (2009), 233.
doi: 10.1140/epjst/e2009-01076-8. |
[13] |
R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623.
doi: 10.1088/0951-7715/7/6/006. |
[14] |
P. Panayotaros, Continuation of normal modes in finite NLS lattices,, Phys. Lett. A, 374 (2010), 3912.
doi: 10.1016/j.physleta.2010.07.022. |
[15] |
P. Panayotaros and A. Aceves, Stabilization of coherent breathers in perturbed Hamiltonian coupled oscillators,, Phys. Lett. A, 375 (2011), 3964.
doi: 10.1016/j.physleta.2011.09.019. |
[16] |
Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Euro. Math. Soc., (2004).
doi: 10.4171/003. |
[17] |
M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems,, Lect. Notes Math. 1907, (1907).
doi: 10.1007/978-3-540-71189-6. |
[18] |
M. O. Williams, C. W. McGrath and J. N. Kutz, Light-bullet routing and control with planar waveguide arrays,, Opt. Express, 18 (2010), 11671.
doi: 10.1364/OE.18.011671. |
[19] |
D. V. Zezyulin and V. V. Konotop, Nonlinear modes in finite-dimensional PT-symmetric systems,, Phys. Rev. Lett, 108 (2012).
doi: 10.1103/PhysRevLett.108.213906. |
[1] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[2] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[3] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[4] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[5] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[6] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[7] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[8] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[9] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[10] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[11] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[12] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[13] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[14] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[15] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[16] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[17] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[18] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[19] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[20] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]