June  2014, 19(4): 1171-1195. doi: 10.3934/dcdsb.2014.19.1171

Asymptotic pattern of a migratory and nonmonotone population model

1. 

Department of Mathematics, Foshan University, Foshan, 528000, China

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

3. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7

Received  April 2012 Revised  July 2013 Published  April 2014

In this paper, we consider a time-delayed and nonlocal population model with migration and relax the monotone assumption for the birth function. We study the global dynamics of the model system when the spatial domain is bounded. If the spatial domain is unbounded, we investigate the spreading speed $c^*$, the non-existence of traveling wave solutions with speed $c\in(0,c^*)$, the existence of traveling wave solutions with $c\geq c^*$, and the uniqueness of traveling wave solutions with $c>c^*$. It is shown that the spreading speed coincides with the minimal wave speed of traveling waves.
Citation: Chufen Wu, Dongmei Xiao, Xiao-Qiang Zhao. Asymptotic pattern of a migratory and nonmonotone population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1171-1195. doi: 10.3934/dcdsb.2014.19.1171
References:
[1]

J. Brown and N. Pavlovic, Evolution in heterogeneous environments: effects of migration on habitat specialization,, Evolutionary Ecology, 6 (1992), 360.  doi: 10.1007/BF02270698.  Google Scholar

[2]

J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system,, J. Diff. Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[3]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Diff. Equations, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[4]

S. Gourley and J. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread,, Fields Inst. Commun., 48 (2006), 137.   Google Scholar

[5]

K. Hadeler and M. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Can. Appl. Math. Quart., 10 (2002), 473.   Google Scholar

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and monographs, (1988).   Google Scholar

[7]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[8]

M. Lewis and G. Schemitz, Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis,, Forma, 11 (1996), 1.   Google Scholar

[9]

R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Am. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[10]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Math. surveys and monographs, (1995).   Google Scholar

[11]

H. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[12]

H. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173.  doi: 10.1007/BF00279720.  Google Scholar

[13]

H. Thieme, On a class of Hammerstein integral equations,, Manuscripta Math., 29 (1979), 49.  doi: 10.1007/BF01309313.  Google Scholar

[14]

H. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Anal. (RWA), 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[15]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Diff. Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[16]

Q. Wang and X.-Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment,, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231.   Google Scholar

[17]

J. Wu, Theory and applications of partial functional differential equations,, Applied Math. Sci., 119 (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[18]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, Can. Appl. Math. Quart., 11 (2003), 303.   Google Scholar

[19]

D. Xu and X.-Q. Zhao, Asymptotic speed of spread and traveling waves for a nonlocal epidemic model,, Discrete Cont. Dyn. Syst. (Ser. B), 5 (2005), 1043.  doi: 10.3934/dcdsb.2005.5.1043.  Google Scholar

[20]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay,, Can. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

show all references

References:
[1]

J. Brown and N. Pavlovic, Evolution in heterogeneous environments: effects of migration on habitat specialization,, Evolutionary Ecology, 6 (1992), 360.  doi: 10.1007/BF02270698.  Google Scholar

[2]

J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system,, J. Diff. Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[3]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Diff. Equations, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[4]

S. Gourley and J. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread,, Fields Inst. Commun., 48 (2006), 137.   Google Scholar

[5]

K. Hadeler and M. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Can. Appl. Math. Quart., 10 (2002), 473.   Google Scholar

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and monographs, (1988).   Google Scholar

[7]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[8]

M. Lewis and G. Schemitz, Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis,, Forma, 11 (1996), 1.   Google Scholar

[9]

R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Am. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[10]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Math. surveys and monographs, (1995).   Google Scholar

[11]

H. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[12]

H. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173.  doi: 10.1007/BF00279720.  Google Scholar

[13]

H. Thieme, On a class of Hammerstein integral equations,, Manuscripta Math., 29 (1979), 49.  doi: 10.1007/BF01309313.  Google Scholar

[14]

H. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Anal. (RWA), 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[15]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Diff. Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[16]

Q. Wang and X.-Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment,, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231.   Google Scholar

[17]

J. Wu, Theory and applications of partial functional differential equations,, Applied Math. Sci., 119 (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[18]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, Can. Appl. Math. Quart., 11 (2003), 303.   Google Scholar

[19]

D. Xu and X.-Q. Zhao, Asymptotic speed of spread and traveling waves for a nonlocal epidemic model,, Discrete Cont. Dyn. Syst. (Ser. B), 5 (2005), 1043.  doi: 10.3934/dcdsb.2005.5.1043.  Google Scholar

[20]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay,, Can. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

[1]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[2]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[3]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[4]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[5]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[6]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[7]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[8]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[9]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[10]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[11]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[12]

Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118

[13]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[14]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[15]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[16]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[17]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020047

[18]

Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735

[19]

Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32

[20]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]