\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Phase transition and diffusion among socially interacting self-propelled agents

Abstract / Introduction Related Papers Cited by
  • We consider a hydrodynamic model of swarming behavior derived from the kinetic description of a particle system combining a noisy Cucker-Smale consensus force and self-propulsion. In the large self-propulsive force limit, we provide evidence of a phase transition from disordered to ordered motion which manifests itself as a change of type of the limit model (from hyperbolic to diffusive) at the crossing of a critical noise intensity. In the hyperbolic regime, the resulting model, referred to as the `Self-Organized Hydrodynamics (SOH)', consists of a system of compressible Euler equations with a speed constraint. We show that the range of SOH models obtained by this limit is restricted. To waive this restriction, we compute the Navier-Stokes diffusive corrections to the hydrodynamic model. Adding these diffusive corrections, the limit of a large propulsive force yields unrestricted SOH models and offers an alternative to the derivation of the SOH using kinetic models with speed constraints.
    Mathematics Subject Classification: 35L60, 35K55, 35Q80, 82C05, 82C22, 82C70, 92D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982), 1081-1088.doi: 10.2331/suisan.48.1081.

    [2]

    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdrakovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.doi: 10.1073/pnas.0711437105.

    [3]

    A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo and P. Degond, Phase transitions in a Cucker-Smale model with self-propulsion, in preparation.

    [4]

    A. B. T. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: Applications to the capelin, Mathematics and Computers in Simulation, 79 (2009), 3397-3414.doi: 10.1016/j.matcom.2008.11.018.

    [5]

    A. Barbaro, B. Einarsson, B. Birnir, S. Sigurdsson, H. Valdimarsson, O. K. Pálsson, S. Sveinbjornsson and Th. Sigurdsson, Modelling and simulations of the migration of pelagic fish, ICES Journal of Marine Science, 66 (2009), 826-838.doi: 10.1093/icesjms/fsp067.

    [6]

    Ch. Becco, N. Vandewalle, J. Delcourt and P. Poncin, Experimental evidences of a structural and dynamical transition in fish schools, Physica A, 367 (2006), 487-793.doi: 10.1016/j.physa.2005.11.041.

    [7]

    E. Bertin, M. Droz and G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles, Phys. Rev. E, 74 (2006), 022101.doi: 10.1103/PhysRevE.74.022101.

    [8]

    E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis, J. Phys. A: Math. Theor., 42 (2009), 445001.doi: 10.1088/1751-8113/42/44/445001.

    [9]

    A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710.doi: 10.1088/0951-7715/22/3/009.

    [10]

    M. Bostan and J. A. Carrillo, Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming, Math. Models Methods Appl. Sci., 23 (2013), 2353-2393.doi: 10.1142/S0218202513500346.

    [11]

    F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.doi: 10.1142/S0218202511005702.

    [12]

    F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343.doi: 10.1016/j.aml.2011.09.011.

    [13]

    H. Brézis, Analyse Fonctionnelle. Thèorie et Applications, Masson, Paris, 1983.

    [14]

    J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.doi: 10.1126/science.1125142.

    [15]

    J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.doi: 10.1137/090757290.

    [16]

    J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552.doi: 10.1142/S0218202510004684.

    [17]

    Y-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D, 232 (2007), 33-47.doi: 10.1016/j.physd.2007.05.007.

    [18]

    I. D. Couzin and N. R. Franks., Self-organized lane formation and optimized traffic flow in army ants, Proceedings of the Royal Society B: Biological Sciences, 270 (2003), 139-146.doi: 10.1098/rspb.2002.2210.

    [19]

    I. D. Couzin and J. Krause, Self-organization and collective behavior in vertebrates, Advance in the Study of Behavior, 32 (2003), 1-74.doi: 10.1016/S0065-3454(03)01001-5.

    [20]

    I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective Memory and Spatial Sorting in Animal Groups, J. theor. Biol., 218 (2002), 1-11.doi: 10.1006/jtbi.2002.3065.

    [21]

    F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.doi: 10.1016/j.matpur.2007.12.002.

    [22]

    F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.doi: 10.1109/TAC.2007.895842.

    [23]

    P. Degond, Macroscopic limits of the Boltzmann equation: A review, in Modeling and Computational Methods for Kinetic Equations, (eds. P. Degond, L. Pareschi, and G. Russo), Birkhäuser Boston, (2004), 3-57.

    [24]

    P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonl. Sci., 23 (2013), 427-456.doi: 10.1007/s00332-012-9157-y.

    [25]

    P. Degond, J-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.doi: 10.4310/MAA.2013.v20.n2.a1.

    [26]

    P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1193-1215.doi: 10.1142/S0218202508003005.

    [27]

    P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, J. Stat. Phys., 138 (2010), 85-125.doi: 10.1007/s10955-009-9879-x.

    [28]

    P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1459-1490.doi: 10.1142/S0218202510004659.

    [29]

    J. Deseigne, O. Dauchot and H. Chaté, Collective motion of vibrated polar disks, Phys. Rev. Lett., 105 (2010), 098001.doi: 10.1103/PhysRevLett.105.098001.

    [30]

    M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.doi: 10.1103/PhysRevLett.96.104302.

    [31]

    R. Eftimie, G. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proc. Natl. Acad. Sci. USA, 104 (2007), 6974-6979.doi: 10.1073/pnas.0611483104.

    [32]

    M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31.doi: 10.1016/j.physd.2010.08.003.

    [33]

    A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011-1250051.doi: 10.1142/S021820251250011X.

    [34]

    A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math Anal, 44 (2012), 791-826.doi: 10.1137/110823912.

    [35]

    S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.doi: 10.4310/CMS.2009.v7.n2.a9.

    [36]

    S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.doi: 10.4310/CMS.2009.v7.n2.a2.

    [37]

    S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008), 415-435.doi: 10.3934/krm.2008.1.415.

    [38]

    C. K. Hemelrijk and H. Hildenbrandt, Some causes of the variable shape of flocks of birds, PLOS ONE, 6 (2011), e22479.doi: 10.1371/journal.pone.0022479.

    [39]

    Y. Katz, K. Tunstrom, C. C. Ioannou, C. Huepe and I. D. Couzin, Inferring the structure and dynamics of interactions in schooling fish, Proc. Nat. Acad. Sci., 108 (2011), 18720-18725.doi: 10.1073/pnas.1107583108.

    [40]

    R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior, Proc. Nat. Acad. Sci. USA, 107 (2010), 12576-12580.doi: 10.1073/pnas.1001763107.

    [41]

    A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.doi: 10.1007/s002850050158.

    [42]

    A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.doi: 10.1007/s00285-003-0209-7.

    [43]

    S. Mishra, A. Baskaran and C. Marchetti, Fluctuations and pattern formation in self-propelled particles, Phys. Rev. E, 81 (2010), 061916.doi: 10.1103/PhysRevE.81.061916.

    [44]

    S. Motsch and L. Navoret, Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior, Multiscale Modeling and Simulation, 9 (2011), 1253-1275.doi: 10.1137/100794067.

    [45]

    S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.doi: 10.1007/s10955-011-0285-9.

    [46]

    V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self-propelling particles with kinematic constraints: the relation between the discrete and the continuous description, Physica A, 381 (2007), 39-46.doi: 10.1016/j.physa.2007.03.045.

    [47]

    J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719. doi: 10.1137/060673254.

    [48]

    N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210.doi: 10.1103/PhysRevE.81.056210.

    [49]

    J. Toner and Y. Tu, Flocks, Long-range order in a two-dimensional dynamical XY model: how birds fly together, Phys. Rev. Lett., 75 (1995), 4326-4329.doi: 10.1103/PhysRevLett.75.4326.

    [50]

    J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics, 318 (2005), 170-244.doi: 10.1016/j.aop.2005.04.011.

    [51]

    C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math, 65 (2004), 152-174.doi: 10.1137/S0036139903437424.

    [52]

    C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.doi: 10.1007/s11538-006-9088-6.

    [53]

    Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks, Phys. Rev. Lett., 80 (1998), 4819-4822.doi: 10.1103/PhysRevLett.80.4819.

    [54]

    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226.

    [55]

    T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.

    [56]

    M. Yamao, H. Naoki and S. Ishii, Multi-cellular logistics of collective cell migration, PLoS ONE, 6 (2011), e27950.doi: 10.1371/journal.pone.0027950.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return