July  2014, 19(5): 1249-1278. doi: 10.3934/dcdsb.2014.19.1249

Phase transition and diffusion among socially interacting self-propelled agents

1. 

Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7058, United States

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  July 2012 Revised  October 2012 Published  April 2014

We consider a hydrodynamic model of swarming behavior derived from the kinetic description of a particle system combining a noisy Cucker-Smale consensus force and self-propulsion. In the large self-propulsive force limit, we provide evidence of a phase transition from disordered to ordered motion which manifests itself as a change of type of the limit model (from hyperbolic to diffusive) at the crossing of a critical noise intensity. In the hyperbolic regime, the resulting model, referred to as the `Self-Organized Hydrodynamics (SOH)', consists of a system of compressible Euler equations with a speed constraint. We show that the range of SOH models obtained by this limit is restricted. To waive this restriction, we compute the Navier-Stokes diffusive corrections to the hydrodynamic model. Adding these diffusive corrections, the limit of a large propulsive force yields unrestricted SOH models and offers an alternative to the derivation of the SOH using kinetic models with speed constraints.
Citation: Alethea B. T. Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1249-1278. doi: 10.3934/dcdsb.2014.19.1249
References:
[1]

I. Aoki, A simulation study on the schooling mechanism in fish,, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982), 1081. doi: 10.2331/suisan.48.1081. Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdrakovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232. doi: 10.1073/pnas.0711437105. Google Scholar

[3]

A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo and P. Degond, Phase transitions in a Cucker-Smale model with self-propulsion,, in preparation., (). Google Scholar

[4]

A. B. T. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: Applications to the capelin,, Mathematics and Computers in Simulation, 79 (2009), 3397. doi: 10.1016/j.matcom.2008.11.018. Google Scholar

[5]

A. Barbaro, B. Einarsson, B. Birnir, S. Sigurdsson, H. Valdimarsson, O. K. Pálsson, S. Sveinbjornsson and Th. Sigurdsson, Modelling and simulations of the migration of pelagic fish,, ICES Journal of Marine Science, 66 (2009), 826. doi: 10.1093/icesjms/fsp067. Google Scholar

[6]

Ch. Becco, N. Vandewalle, J. Delcourt and P. Poncin, Experimental evidences of a structural and dynamical transition in fish schools,, Physica A, 367 (2006), 487. doi: 10.1016/j.physa.2005.11.041. Google Scholar

[7]

E. Bertin, M. Droz and G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.022101. Google Scholar

[8]

E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009). doi: 10.1088/1751-8113/42/44/445001. Google Scholar

[9]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels,, Nonlinearity, 22 (2009), 683. doi: 10.1088/0951-7715/22/3/009. Google Scholar

[10]

M. Bostan and J. A. Carrillo, Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming,, Math. Models Methods Appl. Sci., 23 (2013), 2353. doi: 10.1142/S0218202513500346. Google Scholar

[11]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179. doi: 10.1142/S0218202511005702. Google Scholar

[12]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model,, Appl. Math. Lett., 25 (2012), 339. doi: 10.1016/j.aml.2011.09.011. Google Scholar

[13]

H. Brézis, Analyse Fonctionnelle. Thèorie et Applications,, Masson, (1983). Google Scholar

[14]

J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402. doi: 10.1126/science.1125142. Google Scholar

[15]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218. doi: 10.1137/090757290. Google Scholar

[16]

J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force,, Math. Models Methods Appl. Sci., 20 (2010), 1533. doi: 10.1142/S0218202510004684. Google Scholar

[17]

Y-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007. Google Scholar

[18]

I. D. Couzin and N. R. Franks., Self-organized lane formation and optimized traffic flow in army ants,, Proceedings of the Royal Society B: Biological Sciences, 270 (2003), 139. doi: 10.1098/rspb.2002.2210. Google Scholar

[19]

I. D. Couzin and J. Krause, Self-organization and collective behavior in vertebrates,, Advance in the Study of Behavior, 32 (2003), 1. doi: 10.1016/S0065-3454(03)01001-5. Google Scholar

[20]

I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective Memory and Spatial Sorting in Animal Groups,, J. theor. Biol., 218 (2002), 1. doi: 10.1006/jtbi.2002.3065. Google Scholar

[21]

F. Cucker and E. Mordecki, Flocking in noisy environments,, J. Math. Pures Appl., 89 (2008), 278. doi: 10.1016/j.matpur.2007.12.002. Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Transactions on Automatic Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[23]

P. Degond, Macroscopic limits of the Boltzmann equation: A review,, in Modeling and Computational Methods for Kinetic Equations, (2004), 3. Google Scholar

[24]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonl. Sci., 23 (2013), 427. doi: 10.1007/s00332-012-9157-y. Google Scholar

[25]

P. Degond, J-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89. doi: 10.4310/MAA.2013.v20.n2.a1. Google Scholar

[26]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1193. doi: 10.1142/S0218202508003005. Google Scholar

[27]

P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness,, J. Stat. Phys., 138 (2010), 85. doi: 10.1007/s10955-009-9879-x. Google Scholar

[28]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1459. doi: 10.1142/S0218202510004659. Google Scholar

[29]

J. Deseigne, O. Dauchot and H. Chaté, Collective motion of vibrated polar disks,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.098001. Google Scholar

[30]

M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302. Google Scholar

[31]

R. Eftimie, G. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms,, Proc. Natl. Acad. Sci. USA, 104 (2007), 6974. doi: 10.1073/pnas.0611483104. Google Scholar

[32]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the Povzner-Boltzmann equation,, Physica D, 240 (2011), 21. doi: 10.1016/j.physd.2010.08.003. Google Scholar

[33]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Models Methods Appl. Sci., 22 (2012), 1250011. doi: 10.1142/S021820251250011X. Google Scholar

[34]

A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math Anal, 44 (2012), 791. doi: 10.1137/110823912. Google Scholar

[35]

S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system,, Commun. Math. Sci., 7 (2009), 453. doi: 10.4310/CMS.2009.v7.n2.a9. Google Scholar

[36]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2. Google Scholar

[37]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415. doi: 10.3934/krm.2008.1.415. Google Scholar

[38]

C. K. Hemelrijk and H. Hildenbrandt, Some causes of the variable shape of flocks of birds,, PLOS ONE, 6 (2011). doi: 10.1371/journal.pone.0022479. Google Scholar

[39]

Y. Katz, K. Tunstrom, C. C. Ioannou, C. Huepe and I. D. Couzin, Inferring the structure and dynamics of interactions in schooling fish,, Proc. Nat. Acad. Sci., 108 (2011), 18720. doi: 10.1073/pnas.1107583108. Google Scholar

[40]

R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior,, Proc. Nat. Acad. Sci. USA, 107 (2010), 12576. doi: 10.1073/pnas.1001763107. Google Scholar

[41]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm,, J. Math. Biol., 38 (1999), 534. doi: 10.1007/s002850050158. Google Scholar

[42]

A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, J. Math. Biol., 47 (2003), 353. doi: 10.1007/s00285-003-0209-7. Google Scholar

[43]

S. Mishra, A. Baskaran and C. Marchetti, Fluctuations and pattern formation in self-propelled particles,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.061916. Google Scholar

[44]

S. Motsch and L. Navoret, Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Modeling and Simulation, 9 (2011), 1253. doi: 10.1137/100794067. Google Scholar

[45]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9. Google Scholar

[46]

V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self-propelling particles with kinematic constraints: the relation between the discrete and the continuous description,, Physica A, 381 (2007), 39. doi: 10.1016/j.physa.2007.03.045. Google Scholar

[47]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (): 694. doi: 10.1137/060673254. Google Scholar

[48]

N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.056210. Google Scholar

[49]

J. Toner and Y. Tu, Flocks, Long-range order in a two-dimensional dynamical XY model: how birds fly together,, Phys. Rev. Lett., 75 (1995), 4326. doi: 10.1103/PhysRevLett.75.4326. Google Scholar

[50]

J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks,, Annals of Physics, 318 (2005), 170. doi: 10.1016/j.aop.2005.04.011. Google Scholar

[51]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math, 65 (2004), 152. doi: 10.1137/S0036139903437424. Google Scholar

[52]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6. Google Scholar

[53]

Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819. doi: 10.1103/PhysRevLett.80.4819. Google Scholar

[54]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[55]

T. Vicsek and A. Zafeiris, Collective motion,, Physics Reports, 517 (2012), 71. Google Scholar

[56]

M. Yamao, H. Naoki and S. Ishii, Multi-cellular logistics of collective cell migration,, PLoS ONE, 6 (2011). doi: 10.1371/journal.pone.0027950. Google Scholar

show all references

References:
[1]

I. Aoki, A simulation study on the schooling mechanism in fish,, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982), 1081. doi: 10.2331/suisan.48.1081. Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdrakovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232. doi: 10.1073/pnas.0711437105. Google Scholar

[3]

A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo and P. Degond, Phase transitions in a Cucker-Smale model with self-propulsion,, in preparation., (). Google Scholar

[4]

A. B. T. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: Applications to the capelin,, Mathematics and Computers in Simulation, 79 (2009), 3397. doi: 10.1016/j.matcom.2008.11.018. Google Scholar

[5]

A. Barbaro, B. Einarsson, B. Birnir, S. Sigurdsson, H. Valdimarsson, O. K. Pálsson, S. Sveinbjornsson and Th. Sigurdsson, Modelling and simulations of the migration of pelagic fish,, ICES Journal of Marine Science, 66 (2009), 826. doi: 10.1093/icesjms/fsp067. Google Scholar

[6]

Ch. Becco, N. Vandewalle, J. Delcourt and P. Poncin, Experimental evidences of a structural and dynamical transition in fish schools,, Physica A, 367 (2006), 487. doi: 10.1016/j.physa.2005.11.041. Google Scholar

[7]

E. Bertin, M. Droz and G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.022101. Google Scholar

[8]

E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009). doi: 10.1088/1751-8113/42/44/445001. Google Scholar

[9]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels,, Nonlinearity, 22 (2009), 683. doi: 10.1088/0951-7715/22/3/009. Google Scholar

[10]

M. Bostan and J. A. Carrillo, Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming,, Math. Models Methods Appl. Sci., 23 (2013), 2353. doi: 10.1142/S0218202513500346. Google Scholar

[11]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179. doi: 10.1142/S0218202511005702. Google Scholar

[12]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model,, Appl. Math. Lett., 25 (2012), 339. doi: 10.1016/j.aml.2011.09.011. Google Scholar

[13]

H. Brézis, Analyse Fonctionnelle. Thèorie et Applications,, Masson, (1983). Google Scholar

[14]

J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402. doi: 10.1126/science.1125142. Google Scholar

[15]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218. doi: 10.1137/090757290. Google Scholar

[16]

J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force,, Math. Models Methods Appl. Sci., 20 (2010), 1533. doi: 10.1142/S0218202510004684. Google Scholar

[17]

Y-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007. Google Scholar

[18]

I. D. Couzin and N. R. Franks., Self-organized lane formation and optimized traffic flow in army ants,, Proceedings of the Royal Society B: Biological Sciences, 270 (2003), 139. doi: 10.1098/rspb.2002.2210. Google Scholar

[19]

I. D. Couzin and J. Krause, Self-organization and collective behavior in vertebrates,, Advance in the Study of Behavior, 32 (2003), 1. doi: 10.1016/S0065-3454(03)01001-5. Google Scholar

[20]

I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective Memory and Spatial Sorting in Animal Groups,, J. theor. Biol., 218 (2002), 1. doi: 10.1006/jtbi.2002.3065. Google Scholar

[21]

F. Cucker and E. Mordecki, Flocking in noisy environments,, J. Math. Pures Appl., 89 (2008), 278. doi: 10.1016/j.matpur.2007.12.002. Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Transactions on Automatic Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[23]

P. Degond, Macroscopic limits of the Boltzmann equation: A review,, in Modeling and Computational Methods for Kinetic Equations, (2004), 3. Google Scholar

[24]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonl. Sci., 23 (2013), 427. doi: 10.1007/s00332-012-9157-y. Google Scholar

[25]

P. Degond, J-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89. doi: 10.4310/MAA.2013.v20.n2.a1. Google Scholar

[26]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1193. doi: 10.1142/S0218202508003005. Google Scholar

[27]

P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness,, J. Stat. Phys., 138 (2010), 85. doi: 10.1007/s10955-009-9879-x. Google Scholar

[28]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1459. doi: 10.1142/S0218202510004659. Google Scholar

[29]

J. Deseigne, O. Dauchot and H. Chaté, Collective motion of vibrated polar disks,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.098001. Google Scholar

[30]

M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302. Google Scholar

[31]

R. Eftimie, G. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms,, Proc. Natl. Acad. Sci. USA, 104 (2007), 6974. doi: 10.1073/pnas.0611483104. Google Scholar

[32]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the Povzner-Boltzmann equation,, Physica D, 240 (2011), 21. doi: 10.1016/j.physd.2010.08.003. Google Scholar

[33]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Models Methods Appl. Sci., 22 (2012), 1250011. doi: 10.1142/S021820251250011X. Google Scholar

[34]

A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math Anal, 44 (2012), 791. doi: 10.1137/110823912. Google Scholar

[35]

S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system,, Commun. Math. Sci., 7 (2009), 453. doi: 10.4310/CMS.2009.v7.n2.a9. Google Scholar

[36]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2. Google Scholar

[37]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415. doi: 10.3934/krm.2008.1.415. Google Scholar

[38]

C. K. Hemelrijk and H. Hildenbrandt, Some causes of the variable shape of flocks of birds,, PLOS ONE, 6 (2011). doi: 10.1371/journal.pone.0022479. Google Scholar

[39]

Y. Katz, K. Tunstrom, C. C. Ioannou, C. Huepe and I. D. Couzin, Inferring the structure and dynamics of interactions in schooling fish,, Proc. Nat. Acad. Sci., 108 (2011), 18720. doi: 10.1073/pnas.1107583108. Google Scholar

[40]

R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior,, Proc. Nat. Acad. Sci. USA, 107 (2010), 12576. doi: 10.1073/pnas.1001763107. Google Scholar

[41]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm,, J. Math. Biol., 38 (1999), 534. doi: 10.1007/s002850050158. Google Scholar

[42]

A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, J. Math. Biol., 47 (2003), 353. doi: 10.1007/s00285-003-0209-7. Google Scholar

[43]

S. Mishra, A. Baskaran and C. Marchetti, Fluctuations and pattern formation in self-propelled particles,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.061916. Google Scholar

[44]

S. Motsch and L. Navoret, Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Modeling and Simulation, 9 (2011), 1253. doi: 10.1137/100794067. Google Scholar

[45]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9. Google Scholar

[46]

V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self-propelling particles with kinematic constraints: the relation between the discrete and the continuous description,, Physica A, 381 (2007), 39. doi: 10.1016/j.physa.2007.03.045. Google Scholar

[47]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (): 694. doi: 10.1137/060673254. Google Scholar

[48]

N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.056210. Google Scholar

[49]

J. Toner and Y. Tu, Flocks, Long-range order in a two-dimensional dynamical XY model: how birds fly together,, Phys. Rev. Lett., 75 (1995), 4326. doi: 10.1103/PhysRevLett.75.4326. Google Scholar

[50]

J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks,, Annals of Physics, 318 (2005), 170. doi: 10.1016/j.aop.2005.04.011. Google Scholar

[51]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math, 65 (2004), 152. doi: 10.1137/S0036139903437424. Google Scholar

[52]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6. Google Scholar

[53]

Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819. doi: 10.1103/PhysRevLett.80.4819. Google Scholar

[54]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[55]

T. Vicsek and A. Zafeiris, Collective motion,, Physics Reports, 517 (2012), 71. Google Scholar

[56]

M. Yamao, H. Naoki and S. Ishii, Multi-cellular logistics of collective cell migration,, PLoS ONE, 6 (2011). doi: 10.1371/journal.pone.0027950. Google Scholar

[1]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019168

[2]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[3]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[4]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[5]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[6]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[7]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[8]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[9]

Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic & Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79

[10]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[11]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[12]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[13]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[14]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[15]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019072

[16]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[17]

Vincent Giovangigli, Wen-An Yong. Erratum: ``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic & Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018

[18]

Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic & Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033

[19]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[20]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]