-
Previous Article
The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime
- DCDS-B Home
- This Issue
-
Next Article
Latent self-exciting point process model for spatial-temporal networks
Rethinking centrality: The role of dynamical processes in social network analysis
1. | Robert Bosch LLC, 4005 Miranda Ave, Palo Alto, CA 94304, United States |
2. | USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, United States |
References:
[1] |
R. M. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. |
[2] |
N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Griffin, London, 1975. |
[3] |
E. Bakshy, J. M. Hofman, W. A. Mason and D. J. Watts, Everyone's an influencer: Quantifying influence on twitter, in Proc. the fourth ACM Int. Conf. on Web search and data mining, New York, NY, USA, (2011), 65-74.
doi: 10.1145/1935826.1935845. |
[4] |
A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks, 1st edition, Cambridge University Press, Cambridge, England, 2008.
doi: 10.1017/CBO9780511791383. |
[5] |
L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser and C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A: Statistical Mechanics and its Applications, 364 (2006), 513-536.
doi: 10.1016/j.physa.2005.08.083. |
[6] |
P. Boldi, M. Santini and S. Vigna, Pagerank as a function of the damping factor, in Proc. the 14th Int. Conf. on World Wide Web, (2005), 557-566.
doi: 10.1145/1060745.1060827. |
[7] |
P. Bonacich, Factoring and weighting approaches to status scores and clique identification, Journal of Mathematical Sociology, 2 (1972), 113-120.
doi: 10.1080/0022250X.1972.9989806. |
[8] |
P. Bonacich, Power and centrality: A family of measures, The American Journal of Sociology, 92 (1987), 1170-1182.
doi: 10.1086/228631. |
[9] |
P. Bonacich and P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations, Social Networks, 23 (2001), 191-201.
doi: 10.1016/S0378-8733(01)00038-7. |
[10] |
S. Borgatti, Centrality and network flow, Social Networks, 27 (2005), 55-71.
doi: 10.1016/j.socnet.2004.11.008. |
[11] |
S. Borgatti and M. Everett, A graph-theoretic perspective on centrality, Social Networks, 28 (2006), 466-484.
doi: 10.1016/j.socnet.2005.11.005. |
[12] |
J. J. Brown and P. H. Reingen, Social ties and Word-of-Mouth referral behavior, The Journal of Consumer Research, 14 (1987), 350-362.
doi: 10.1086/209118. |
[13] |
D. Centola and M. Macy, Complex contagions and the weakness of long ties, American Journal of Sociology, 113 (2007), 702-734.
doi: 10.1086/521848. |
[14] |
M. Cha, H. Haddadi, F. Benevenuto and K. P. Gummadi, Measuring User Influence in Twitter: The Million Follower Fallacy, in Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), 2010. |
[15] |
K. Dietz, The estimation of the basic reproduction number for infectious diseases, Statistical methods in medical research, 2 (1993), 23-41.
doi: 10.1177/096228029300200103. |
[16] |
E. Estrada, N. Hatano and M. Benzi, The physics of communicability in complex networks, Physics Reports, 514 (2012), 89-119.
doi: 10.1016/j.physrep.2012.01.006. |
[17] |
S. Fortunato and A. Flammini, Random walks on directed networks: The case of pageRank, International Journal of Bifurcation and Chaos, 17 (2007), 2343-2353.
doi: 10.1142/S0218127407018439. |
[18] |
L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40 (1977), 35-41.
doi: 10.2307/3033543. |
[19] |
F. Gebali, Markov chains., Analysis of Computer and Communication Networks, 65:122. |
[20] |
R. Ghosh and K. Lerman, Predicting Influential Users in Online Social Networks, in Proc. KDD workshop on Social Network Analysis (SNAKDD), 2010. |
[21] |
R. Ghosh and K. Lerman, A Framework for Quantitative Analysis of Cascades on Networks, in Proc. Web Search and Data Mining Conference (WSDM), (2011), 665-674.
doi: 10.1145/1935826.1935917. |
[22] |
R. Ghosh and K. Lerman, Parameterized centrality metric for network analysis, Physical Review E, 83 (2011), 066118+.
doi: 10.1103/PhysRevE.83.066118. |
[23] |
R. Ghosh, T. Surachawala and K. Lerman, Entropy-based classification of ‘retweeting' activity on twitter, in Proc. KDD workshop on Social Network Analysis (SNA-KDD), 2011. |
[24] |
D. F. Gleich, P. G. Constantine, A. D. Flaxman and A. Gunawardana, Tracking the random surfer: Empirically measured teleportation parameters in PageRank, in Proc. 19th international conference on World wide web, (2010), 381-390.
doi: 10.1145/1772690.1772730. |
[25] |
S. Goel, D. J. Watts and D. G. Goldstein, The structure of online diffusion networks, in Proc. 13th ACM Conference on Electronic Commerce (EC 2012), (2012), 623-638, URL http://5harad.com/papers/diffusion.pdf.
doi: 10.1145/2229012.2229058. |
[26] |
J. Goldenberg, B. Libai and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Marketing Letters, 211-223. |
[27] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[28] |
N. Hodas and K. Lerman, How limited visibility and divided attention constrain social contagion, in submitted to Social Computing, 2012. |
[29] |
N. O. Hodas and K. Lerman, The simple rules of social contagion, Scientific Reports, 4, 2014.
doi: 10.1038/srep04343. |
[30] |
T. Hogg and K. Lerman, Stochastic models of user-contributory web sites, in Proc. 3rd Int. Conf. on Weblogs and Social Media (ICWSM), 2009. |
[31] |
T. Hogg and K. Lerman, Social Dynamics of Digg, EPJ Data Science, 5 (2012). |
[32] |
J. L. Iribarren and E. Moro, Impact of human activity patterns on the dynamics of information diffusion, Physical Review Letters, 103 (2009), 038702+.
doi: 10.1103/PhysRevLett.103.038702. |
[33] |
G. Jeh and J. Widom, Scaling personalized web search, in Proc. the 12th Int. Conf. on World Wide Web, New York, NY, USA, (2003), 271-279.
doi: 10.1145/775189.775191. |
[34] |
E. Katz and P. Lazarsfeld, Personal Influence: The Part Played by People in the Flow of Mass Communications, Transaction Publishers, 2005. |
[35] |
L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953), 39-43.
doi: 10.1007/BF02289026. |
[36] |
D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network, KDD '03 Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, (2003), 137-146.
doi: 10.1145/956755.956769. |
[37] |
C. Kiss and M. Bichler, Identiffication of influencers-measuring influence in customer networks, Decision Support Systems, 46 (2008), 233-253. |
[38] |
S. Kotz and N. Balakrishnan, Advances in urn models during the past two decades, in Advances in combinatorial methods and applications to probability and statistics, Birkhauser Boston, Boston, 1997, 203-257. |
[39] |
, R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks. |
[40] |
R. Lambiotte, R. Sinatra, J. C. Delvenne, T. S. Evans, M. Barahona and V. Latora, Flow graphs: Interweaving dynamics and structure, Physical Review E, 84 (2011), 017102+.
doi: 10.1103/PhysRevE.84.017102. |
[41] |
C. Lee, H. Kwak, H. Park and S. Moon, Finding Influentials from Temporal Order of Information Adoption in Twitter, Proc. 19th World-Wide Web (WWW) Conference (Poster), 2010. |
[42] |
K. Lerman and R. Ghosh, Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks, Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), 2010. |
[43] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical report, Stanford Digital Library Technologies Project, 1998. |
[44] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 86 (2001), 3200-3203.
doi: 10.1103/PhysRevLett.86.3200. |
[45] |
B. A. Prakash, D. Chakrabartiy, M. Faloutsos, N. Valler and C. Faloutsos, Threshold conditions for arbitrary cascade models on arbitrary networks, in Proc. the Int. Conf. on Data Mining, (2011), 537-546.
doi: 10.1109/ICDM.2011.145. |
[46] |
E. M. Rogers, Diffusion of Innovations, 5th Edition, Free Press, 2003. |
[47] |
D. M. Romero, W. Galuba, S. Asur and B. A. Huberman, Influence and passivity in social media, in Proc. the 20th international Conference on World wide web, (2011), 113-114.
doi: 10.1145/1963192.1963250. |
[48] |
H. Tong, C. Faloutsos and J. Pan, Fast random walk with restart and its applications, in ICDM '06: Proc. the Sixth Int. Conf. on Data Mining, Washington, DC, USA, 2006, 613-622.
doi: 10.1109/ICDM.2006.70. |
[49] |
M. Trusov, A. V. Bodapati and R. E. Bucklin, Determining influential users in internet social networks, Journal of Marketing Research, 47 (2010), 643-658.
doi: 10.1509/jmkr.47.4.643. |
[50] |
G. Ver Steeg, R. Ghosh and K. Lerman, What stops social epidemics?, in Proc. 5th International AAAI Conference on Weblogs and Social Media (ICWSM), 2011. |
[51] |
Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint, Reliable Distributed Systems, IEEE Symposium on, 0 (2003), 25+. |
[52] |
D. J. Watts and P. S. Dodds, Influentials, networks, and public opinion formation, Journal of Consumer Research, 34 (2007), 441-458.
doi: 10.1086/518527. |
show all references
References:
[1] |
R. M. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. |
[2] |
N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Griffin, London, 1975. |
[3] |
E. Bakshy, J. M. Hofman, W. A. Mason and D. J. Watts, Everyone's an influencer: Quantifying influence on twitter, in Proc. the fourth ACM Int. Conf. on Web search and data mining, New York, NY, USA, (2011), 65-74.
doi: 10.1145/1935826.1935845. |
[4] |
A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks, 1st edition, Cambridge University Press, Cambridge, England, 2008.
doi: 10.1017/CBO9780511791383. |
[5] |
L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser and C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A: Statistical Mechanics and its Applications, 364 (2006), 513-536.
doi: 10.1016/j.physa.2005.08.083. |
[6] |
P. Boldi, M. Santini and S. Vigna, Pagerank as a function of the damping factor, in Proc. the 14th Int. Conf. on World Wide Web, (2005), 557-566.
doi: 10.1145/1060745.1060827. |
[7] |
P. Bonacich, Factoring and weighting approaches to status scores and clique identification, Journal of Mathematical Sociology, 2 (1972), 113-120.
doi: 10.1080/0022250X.1972.9989806. |
[8] |
P. Bonacich, Power and centrality: A family of measures, The American Journal of Sociology, 92 (1987), 1170-1182.
doi: 10.1086/228631. |
[9] |
P. Bonacich and P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations, Social Networks, 23 (2001), 191-201.
doi: 10.1016/S0378-8733(01)00038-7. |
[10] |
S. Borgatti, Centrality and network flow, Social Networks, 27 (2005), 55-71.
doi: 10.1016/j.socnet.2004.11.008. |
[11] |
S. Borgatti and M. Everett, A graph-theoretic perspective on centrality, Social Networks, 28 (2006), 466-484.
doi: 10.1016/j.socnet.2005.11.005. |
[12] |
J. J. Brown and P. H. Reingen, Social ties and Word-of-Mouth referral behavior, The Journal of Consumer Research, 14 (1987), 350-362.
doi: 10.1086/209118. |
[13] |
D. Centola and M. Macy, Complex contagions and the weakness of long ties, American Journal of Sociology, 113 (2007), 702-734.
doi: 10.1086/521848. |
[14] |
M. Cha, H. Haddadi, F. Benevenuto and K. P. Gummadi, Measuring User Influence in Twitter: The Million Follower Fallacy, in Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), 2010. |
[15] |
K. Dietz, The estimation of the basic reproduction number for infectious diseases, Statistical methods in medical research, 2 (1993), 23-41.
doi: 10.1177/096228029300200103. |
[16] |
E. Estrada, N. Hatano and M. Benzi, The physics of communicability in complex networks, Physics Reports, 514 (2012), 89-119.
doi: 10.1016/j.physrep.2012.01.006. |
[17] |
S. Fortunato and A. Flammini, Random walks on directed networks: The case of pageRank, International Journal of Bifurcation and Chaos, 17 (2007), 2343-2353.
doi: 10.1142/S0218127407018439. |
[18] |
L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40 (1977), 35-41.
doi: 10.2307/3033543. |
[19] |
F. Gebali, Markov chains., Analysis of Computer and Communication Networks, 65:122. |
[20] |
R. Ghosh and K. Lerman, Predicting Influential Users in Online Social Networks, in Proc. KDD workshop on Social Network Analysis (SNAKDD), 2010. |
[21] |
R. Ghosh and K. Lerman, A Framework for Quantitative Analysis of Cascades on Networks, in Proc. Web Search and Data Mining Conference (WSDM), (2011), 665-674.
doi: 10.1145/1935826.1935917. |
[22] |
R. Ghosh and K. Lerman, Parameterized centrality metric for network analysis, Physical Review E, 83 (2011), 066118+.
doi: 10.1103/PhysRevE.83.066118. |
[23] |
R. Ghosh, T. Surachawala and K. Lerman, Entropy-based classification of ‘retweeting' activity on twitter, in Proc. KDD workshop on Social Network Analysis (SNA-KDD), 2011. |
[24] |
D. F. Gleich, P. G. Constantine, A. D. Flaxman and A. Gunawardana, Tracking the random surfer: Empirically measured teleportation parameters in PageRank, in Proc. 19th international conference on World wide web, (2010), 381-390.
doi: 10.1145/1772690.1772730. |
[25] |
S. Goel, D. J. Watts and D. G. Goldstein, The structure of online diffusion networks, in Proc. 13th ACM Conference on Electronic Commerce (EC 2012), (2012), 623-638, URL http://5harad.com/papers/diffusion.pdf.
doi: 10.1145/2229012.2229058. |
[26] |
J. Goldenberg, B. Libai and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Marketing Letters, 211-223. |
[27] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[28] |
N. Hodas and K. Lerman, How limited visibility and divided attention constrain social contagion, in submitted to Social Computing, 2012. |
[29] |
N. O. Hodas and K. Lerman, The simple rules of social contagion, Scientific Reports, 4, 2014.
doi: 10.1038/srep04343. |
[30] |
T. Hogg and K. Lerman, Stochastic models of user-contributory web sites, in Proc. 3rd Int. Conf. on Weblogs and Social Media (ICWSM), 2009. |
[31] |
T. Hogg and K. Lerman, Social Dynamics of Digg, EPJ Data Science, 5 (2012). |
[32] |
J. L. Iribarren and E. Moro, Impact of human activity patterns on the dynamics of information diffusion, Physical Review Letters, 103 (2009), 038702+.
doi: 10.1103/PhysRevLett.103.038702. |
[33] |
G. Jeh and J. Widom, Scaling personalized web search, in Proc. the 12th Int. Conf. on World Wide Web, New York, NY, USA, (2003), 271-279.
doi: 10.1145/775189.775191. |
[34] |
E. Katz and P. Lazarsfeld, Personal Influence: The Part Played by People in the Flow of Mass Communications, Transaction Publishers, 2005. |
[35] |
L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953), 39-43.
doi: 10.1007/BF02289026. |
[36] |
D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network, KDD '03 Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, (2003), 137-146.
doi: 10.1145/956755.956769. |
[37] |
C. Kiss and M. Bichler, Identiffication of influencers-measuring influence in customer networks, Decision Support Systems, 46 (2008), 233-253. |
[38] |
S. Kotz and N. Balakrishnan, Advances in urn models during the past two decades, in Advances in combinatorial methods and applications to probability and statistics, Birkhauser Boston, Boston, 1997, 203-257. |
[39] |
, R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks. |
[40] |
R. Lambiotte, R. Sinatra, J. C. Delvenne, T. S. Evans, M. Barahona and V. Latora, Flow graphs: Interweaving dynamics and structure, Physical Review E, 84 (2011), 017102+.
doi: 10.1103/PhysRevE.84.017102. |
[41] |
C. Lee, H. Kwak, H. Park and S. Moon, Finding Influentials from Temporal Order of Information Adoption in Twitter, Proc. 19th World-Wide Web (WWW) Conference (Poster), 2010. |
[42] |
K. Lerman and R. Ghosh, Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks, Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), 2010. |
[43] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical report, Stanford Digital Library Technologies Project, 1998. |
[44] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 86 (2001), 3200-3203.
doi: 10.1103/PhysRevLett.86.3200. |
[45] |
B. A. Prakash, D. Chakrabartiy, M. Faloutsos, N. Valler and C. Faloutsos, Threshold conditions for arbitrary cascade models on arbitrary networks, in Proc. the Int. Conf. on Data Mining, (2011), 537-546.
doi: 10.1109/ICDM.2011.145. |
[46] |
E. M. Rogers, Diffusion of Innovations, 5th Edition, Free Press, 2003. |
[47] |
D. M. Romero, W. Galuba, S. Asur and B. A. Huberman, Influence and passivity in social media, in Proc. the 20th international Conference on World wide web, (2011), 113-114.
doi: 10.1145/1963192.1963250. |
[48] |
H. Tong, C. Faloutsos and J. Pan, Fast random walk with restart and its applications, in ICDM '06: Proc. the Sixth Int. Conf. on Data Mining, Washington, DC, USA, 2006, 613-622.
doi: 10.1109/ICDM.2006.70. |
[49] |
M. Trusov, A. V. Bodapati and R. E. Bucklin, Determining influential users in internet social networks, Journal of Marketing Research, 47 (2010), 643-658.
doi: 10.1509/jmkr.47.4.643. |
[50] |
G. Ver Steeg, R. Ghosh and K. Lerman, What stops social epidemics?, in Proc. 5th International AAAI Conference on Weblogs and Social Media (ICWSM), 2011. |
[51] |
Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint, Reliable Distributed Systems, IEEE Symposium on, 0 (2003), 25+. |
[52] |
D. J. Watts and P. S. Dodds, Influentials, networks, and public opinion formation, Journal of Consumer Research, 34 (2007), 441-458.
doi: 10.1086/518527. |
[1] |
Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics and Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377 |
[2] |
Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267 |
[3] |
Lea Ellwardt, Penélope Hernández, Guillem Martínez-Cánovas, Manuel Muñoz-Herrera. Conflict and segregation in networks: An experiment on the interplay between individual preferences and social influence. Journal of Dynamics and Games, 2016, 3 (2) : 191-216. doi: 10.3934/jdg.2016010 |
[4] |
Arvind Kumar Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi. Modeling the control of infectious diseases: Effects of TV and social media advertisements. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1315-1343. doi: 10.3934/mbe.2018061 |
[5] |
Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1385-1398. doi: 10.3934/dcdss.2019095 |
[6] |
Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017 |
[7] |
Werner Creixell, Juan Carlos Losada, Tomás Arredondo, Patricio Olivares, Rosa María Benito. Serendipity in social networks. Networks and Heterogeneous Media, 2012, 7 (3) : 363-371. doi: 10.3934/nhm.2012.7.363 |
[8] |
Yuki Kumagai. Social networks and global transactions. Journal of Dynamics and Games, 2019, 6 (3) : 211-219. doi: 10.3934/jdg.2019015 |
[9] |
Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185 |
[10] |
Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics and Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009 |
[11] |
Grace Gao, Sasank Maganti, Karen A. Monsen. Older adults, frailty, and the social and behavioral determinants of health. Big Data & Information Analytics, 2017 doi: 10.3934/bdia.2017012 |
[12] |
Nicola Bellomo, Miguel A. Herrero, Andrea Tosin. On the dynamics of social conflicts: Looking for the black swan. Kinetic and Related Models, 2013, 6 (3) : 459-479. doi: 10.3934/krm.2013.6.459 |
[13] |
Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381 |
[14] |
Andrea L. Bertozzi. Preface to special issue on mathematics of social systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : i-v. doi: 10.3934/dcdsb.2014.19.5i |
[15] |
Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011 |
[16] |
Caichun Chai, Tiaojun Xiao, Eilin Francis. Is social responsibility for firms competing on quantity evolutionary stable?. Journal of Industrial and Management Optimization, 2018, 14 (1) : 325-347. doi: 10.3934/jimo.2017049 |
[17] |
Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks and Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i |
[18] |
Marta Biancardi, Lucia Maddalena, Giovanni Villani. Social norms for the stability of international enviromental agreements. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022046 |
[19] |
Xiaoshuang Xing, Gaofei Sun, Yong Jin, Wenyi Tang, Xiuzhen Cheng. Relay selection based on social relationship prediction and information leakage reduction for mobile social networks. Mathematical Foundations of Computing, 2018, 1 (4) : 369-382. doi: 10.3934/mfc.2018018 |
[20] |
Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]