\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime

Abstract / Introduction Related Papers Cited by
  • The existence and stability of localized patterns of criminal activity are studied for the reaction-diffusion model of urban crime that was introduced by Short et. al. [Math. Models. Meth. Appl. Sci., 18, Suppl. (2008), pp. 1249--1267]. Such patterns, characterized by the concentration of criminal activity in localized spatial regions, are referred to as hot-spot patterns and they occur in a parameter regime far from the Turing point associated with the bifurcation of spatially uniform solutions. Singular perturbation techniques are used to construct steady-state hot-spot patterns in one and two-dimensional spatial domains, and new types of nonlocal eigenvalue problems are derived that determine the stability of these hot-spot patterns to ${\mathcal O}(1)$ time-scale instabilities. From an analysis of these nonlocal eigenvalue problems, a critical threshold $K_c$ is determined such that a pattern consisting of $K$ hot-spots is unstable to a competition instability if $K>K_c$. This instability, due to a positive real eigenvalue, triggers the collapse of some of the hot-spots in the pattern. Furthermore, in contrast to the well-known stability results for spike patterns of the Gierer-Meinhardt reaction-diffusion model, it is shown for the crime model that there is only a relatively narrow parameter range where oscillatory instabilities in the hot-spot amplitudes occur. Such an instability, due to a Hopf bifurcation, is studied explicitly for a single hot-spot in the shadow system limit, for which the diffusivity of criminals is asymptotically large. Finally, the parameter regime where localized hot-spots occur is compared with the parameter regime, studied in previous works, where Turing instabilities from a spatially uniform steady-state occur.
    Mathematics Subject Classification: Primary: 35B35, 35B20, 45M05; Secondary: 92D50, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional Gray-Scott model, Europ. J. Appl. Math, 20 (2009), 187-214.doi: 10.1017/S0956792508007766.

    [2]

    W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Sys., 10 (2011), 582-666.doi: 10.1137/09077357X.

    [3]

    A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana U. Math. J., 50 (2001), 443-507.doi: 10.1512/iumj.2001.50.1873.

    [4]

    A. Doelman, R. A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray Scott model, Memoirs of the AMS, 155 (2002), xii+64 pp.doi: 10.1090/memo/0737.

    [5]

    A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotic approach, Physica D, 122 (1998), 1-36.doi: 10.1016/S0167-2789(98)00180-8.

    [6]

    A. Doelman and T. J. Kaper, Semistrong pulse interactions in a class of coupled reaction-diffusion systems, SIAM J. Appl. Dyn. Sys., 2 (2003), 53-96.doi: 10.1137/S1111111102405719.

    [7]

    A. Doelman, T. J. Kaper and K. Promislow, Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model, SIAM J. Math. Anal., 38 (2007), 1760-1787.doi: 10.1137/050646883.

    [8]

    T. Hillen and A. Potapov, The one-dimensional chemotaxis model: Global existence and asymptotic profile, Math. Meth. Appl. Sci., 27 (2004), 1783-1801.doi: 10.1002/mma.569.

    [9]

    D. Iron and M. J. Ward, The dynamics of multi-spike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.doi: 10.1137/S0036139901393676.

    [10]

    D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.doi: 10.1016/S0167-2789(00)00206-2.

    [11]

    D. Iron, J. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.doi: 10.1007/s00285-003-0258-y.

    [12]

    K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in a one-dimensional Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162.doi: 10.1093/imamat/hxl028.

    [13]

    T. Kolokolnikov and M. J. Ward, Reduced-wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 513-545.doi: 10.1017/S0956792503005254.

    [14]

    T. Kolokolnikov and M. J. Ward, Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model, DCDS-B, 4 (2004), 1033-1064.doi: 10.3934/dcdsb.2004.4.1033.

    [15]

    T. Kolokolnikov, M. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Studies in Appl. Math., 115 (2005), 21-71.doi: 10.1111/j.1467-9590.2005.01554.

    [16]

    T. Kolokolnikov, M. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.doi: 10.1007/s00332-008-9024-z.

    [17]

    T. Kolokolnikov, M. J. Ward, and J. Wei, Self-replication of mesa patterns in reaction-diffusion models, Physica D, 236 (2007), 104-122.doi: 10.1016/j.physd.2007.07.014.

    [18]

    T. Koloklonikov, M. J. Ward and J. Wei, Slow translational instabilities of spike patterns in the one-dimensional Gray-Scott model, Interfaces and Free Boundaries, 8 (2006), 185-222.doi: 10.4171/IFB/140.

    [19]

    T. Kolokolnikov and J. Wei, Stability of spiky solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., 71 (2011), 1428-1457.doi: 10.1137/100808381.

    [20]

    K. J. Lee and H. L. Swinney, Lamellar structures and self-replicating spots in a reaction-diffusion systems, Phys. Rev. E., 51 (1995), 1899-1915.doi: 10.1103/PhysRevE.51.1899.

    [21]

    W. Liu, A. L. Bertozzi, and T. Kolokolnikov, Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.doi: 10.4310/CMS.2012.v10.n1.a16.

    [22]

    R. McKay and T. Kolokolnikov, Theodore Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 191-220.

    [23]

    C. B. Muratov and V. V. Osipov, Stability of static spike autosolitons in the Gray-Scott model, SIAM J. Appl. Math., 62 (2002), 1463-1487.doi: 10.1137/S0036139901384285.

    [24]

    C. B. Muratov and V. V. Osipov, Static spike autosolitons in the Gray-Scott model, J. Phys. A: Math Gen., 33 (2000), 8893-8916.doi: 10.1088/0305-4470/33/48/321.

    [25]

    Y. Nishiura, Far-from Equilibrium Dynamics, Translated from the 1999 Japanese original by Kunimochi Sakamoto. Translations of Mathematical Monographs, 209. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2002.

    [26]

    K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis Model, Physica D, 240 (2011), 363-375.doi: 10.1016/j.physd.2010.09.011.

    [27]

    J. E. Pearson, Complex patterns in a simple system, Science, 216 (1993), 189-192.

    [28]

    A. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dynam. Diff. Eq., 17 (2005), 293-330.doi: 10.1007/s10884-005-2938-3.

    [29]

    M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models. Meth. Appl. Sci., 18 (2008), 1249-1267.doi: 10.1142/S0218202508003029.

    [30]

    M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime - hotpsots, bifurcations, and suppression, SIAM J. Appl. Dyn. Sys., 9 (2010), 462-483.doi: 10.1137/090759069.

    [31]

    M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotpsots in reaction-diffusion models of crime, Proc. Nat. Acad. Sci., 107 (2010), 3961-3965.

    [32]

    B. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.doi: 10.1137/S0036139902415117.

    [33]

    W. Sun, M. J. Ward and R. Russell, The slow dynamics of two-spike solutions for the Gray-Scott and Gierer-Meinhardt systems: competition and oscillatory instabilities, SIAM J. Appl. Dyn. Syst., 4 (2005), 904-953.doi: 10.1137/040620990.

    [34]

    H. Van der Ploeg and A. Doelman, Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations, Indiana Univ. Math. J., 54 (2005), 1219-1301.doi: 10.1512/iumj.2005.54.2792.

    [35]

    M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Sci., 13 (2003), 209-264.doi: 10.1007/s00332-002-0531-z.

    [36]

    M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns in the Schnakenburg model, Studies in Appl. Math., 109 (2002), 229-264.doi: 10.1111/1467-9590.00223.

    [37]

    M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, Europ. J. Appl. Math., 13 (2002), 283-320.doi: 10.1017/S0956792501004442.

    [38]

    M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711.doi: 10.1017/S0956792503005278.

    [39]

    J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.doi: 10.1007/s00332-001-0380-1.

    [40]

    J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: the strong coupling case, J. Diff. Eq., 178 (2002), 478-518.doi: 10.1006/jdeq.2001.4019.

    [41]

    J. Wei and M. Winter, Existence and stability of multiple spot solutions for the Gray-Scott model in $\mathbbR^2$, Physica D., 176 (2003), 147-180.doi: 10.1016/S0167-2789(02)00743-1.

    [42]

    J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.doi: 10.1007/s00285-007-0146-y.

    [43]

    J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476.doi: 10.1016/j.matpur.2003.09.006.

    [44]

    J. Wei and M. Winter, Asymmetric spotty patterns for the Gray-Scott model in $\mathbbR^2$, Studies in Appl. Math., 110 (2003), 63-102.doi: 10.1111/1467-9590.00231.

    [45]

    J. Wei and L. Zhang, On a nonlocal eigenvalue problem, Ann. Sc. Norm. Sup. Pisa C1. Sci., 30 (2001), 41-62.

    [46]

    J. Wei(2008), Existence and stability of spikes for the Gierer-Meinhardt system, book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5 (M. Chipot ed.), Elsevier, pp. 487-585. doi: 10.1016/S1874-5733(08)80013-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return