Citation: |
[1] |
W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional Gray-Scott model, Europ. J. Appl. Math, 20 (2009), 187-214.doi: 10.1017/S0956792508007766. |
[2] |
W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Sys., 10 (2011), 582-666.doi: 10.1137/09077357X. |
[3] |
A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana U. Math. J., 50 (2001), 443-507.doi: 10.1512/iumj.2001.50.1873. |
[4] |
A. Doelman, R. A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray Scott model, Memoirs of the AMS, 155 (2002), xii+64 pp.doi: 10.1090/memo/0737. |
[5] |
A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotic approach, Physica D, 122 (1998), 1-36.doi: 10.1016/S0167-2789(98)00180-8. |
[6] |
A. Doelman and T. J. Kaper, Semistrong pulse interactions in a class of coupled reaction-diffusion systems, SIAM J. Appl. Dyn. Sys., 2 (2003), 53-96.doi: 10.1137/S1111111102405719. |
[7] |
A. Doelman, T. J. Kaper and K. Promislow, Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model, SIAM J. Math. Anal., 38 (2007), 1760-1787.doi: 10.1137/050646883. |
[8] |
T. Hillen and A. Potapov, The one-dimensional chemotaxis model: Global existence and asymptotic profile, Math. Meth. Appl. Sci., 27 (2004), 1783-1801.doi: 10.1002/mma.569. |
[9] |
D. Iron and M. J. Ward, The dynamics of multi-spike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.doi: 10.1137/S0036139901393676. |
[10] |
D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.doi: 10.1016/S0167-2789(00)00206-2. |
[11] |
D. Iron, J. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.doi: 10.1007/s00285-003-0258-y. |
[12] |
K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in a one-dimensional Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162.doi: 10.1093/imamat/hxl028. |
[13] |
T. Kolokolnikov and M. J. Ward, Reduced-wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 513-545.doi: 10.1017/S0956792503005254. |
[14] |
T. Kolokolnikov and M. J. Ward, Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model, DCDS-B, 4 (2004), 1033-1064.doi: 10.3934/dcdsb.2004.4.1033. |
[15] |
T. Kolokolnikov, M. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Studies in Appl. Math., 115 (2005), 21-71.doi: 10.1111/j.1467-9590.2005.01554. |
[16] |
T. Kolokolnikov, M. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.doi: 10.1007/s00332-008-9024-z. |
[17] |
T. Kolokolnikov, M. J. Ward, and J. Wei, Self-replication of mesa patterns in reaction-diffusion models, Physica D, 236 (2007), 104-122.doi: 10.1016/j.physd.2007.07.014. |
[18] |
T. Koloklonikov, M. J. Ward and J. Wei, Slow translational instabilities of spike patterns in the one-dimensional Gray-Scott model, Interfaces and Free Boundaries, 8 (2006), 185-222.doi: 10.4171/IFB/140. |
[19] |
T. Kolokolnikov and J. Wei, Stability of spiky solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., 71 (2011), 1428-1457.doi: 10.1137/100808381. |
[20] |
K. J. Lee and H. L. Swinney, Lamellar structures and self-replicating spots in a reaction-diffusion systems, Phys. Rev. E., 51 (1995), 1899-1915.doi: 10.1103/PhysRevE.51.1899. |
[21] |
W. Liu, A. L. Bertozzi, and T. Kolokolnikov, Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.doi: 10.4310/CMS.2012.v10.n1.a16. |
[22] |
R. McKay and T. Kolokolnikov, Theodore Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 191-220. |
[23] |
C. B. Muratov and V. V. Osipov, Stability of static spike autosolitons in the Gray-Scott model, SIAM J. Appl. Math., 62 (2002), 1463-1487.doi: 10.1137/S0036139901384285. |
[24] |
C. B. Muratov and V. V. Osipov, Static spike autosolitons in the Gray-Scott model, J. Phys. A: Math Gen., 33 (2000), 8893-8916.doi: 10.1088/0305-4470/33/48/321. |
[25] |
Y. Nishiura, Far-from Equilibrium Dynamics, Translated from the 1999 Japanese original by Kunimochi Sakamoto. Translations of Mathematical Monographs, 209. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2002. |
[26] |
K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis Model, Physica D, 240 (2011), 363-375.doi: 10.1016/j.physd.2010.09.011. |
[27] |
J. E. Pearson, Complex patterns in a simple system, Science, 216 (1993), 189-192. |
[28] |
A. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dynam. Diff. Eq., 17 (2005), 293-330.doi: 10.1007/s10884-005-2938-3. |
[29] |
M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models. Meth. Appl. Sci., 18 (2008), 1249-1267.doi: 10.1142/S0218202508003029. |
[30] |
M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime - hotpsots, bifurcations, and suppression, SIAM J. Appl. Dyn. Sys., 9 (2010), 462-483.doi: 10.1137/090759069. |
[31] |
M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotpsots in reaction-diffusion models of crime, Proc. Nat. Acad. Sci., 107 (2010), 3961-3965. |
[32] |
B. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.doi: 10.1137/S0036139902415117. |
[33] |
W. Sun, M. J. Ward and R. Russell, The slow dynamics of two-spike solutions for the Gray-Scott and Gierer-Meinhardt systems: competition and oscillatory instabilities, SIAM J. Appl. Dyn. Syst., 4 (2005), 904-953.doi: 10.1137/040620990. |
[34] |
H. Van der Ploeg and A. Doelman, Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations, Indiana Univ. Math. J., 54 (2005), 1219-1301.doi: 10.1512/iumj.2005.54.2792. |
[35] |
M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Sci., 13 (2003), 209-264.doi: 10.1007/s00332-002-0531-z. |
[36] |
M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns in the Schnakenburg model, Studies in Appl. Math., 109 (2002), 229-264.doi: 10.1111/1467-9590.00223. |
[37] |
M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, Europ. J. Appl. Math., 13 (2002), 283-320.doi: 10.1017/S0956792501004442. |
[38] |
M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711.doi: 10.1017/S0956792503005278. |
[39] |
J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.doi: 10.1007/s00332-001-0380-1. |
[40] |
J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: the strong coupling case, J. Diff. Eq., 178 (2002), 478-518.doi: 10.1006/jdeq.2001.4019. |
[41] |
J. Wei and M. Winter, Existence and stability of multiple spot solutions for the Gray-Scott model in $\mathbbR^2$, Physica D., 176 (2003), 147-180.doi: 10.1016/S0167-2789(02)00743-1. |
[42] |
J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.doi: 10.1007/s00285-007-0146-y. |
[43] |
J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476.doi: 10.1016/j.matpur.2003.09.006. |
[44] |
J. Wei and M. Winter, Asymmetric spotty patterns for the Gray-Scott model in $\mathbbR^2$, Studies in Appl. Math., 110 (2003), 63-102.doi: 10.1111/1467-9590.00231. |
[45] |
J. Wei and L. Zhang, On a nonlocal eigenvalue problem, Ann. Sc. Norm. Sup. Pisa C1. Sci., 30 (2001), 41-62. |
[46] |
J. Wei(2008), Existence and stability of spikes for the Gierer-Meinhardt system, book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5 (M. Chipot ed.), Elsevier, pp. 487-585. doi: 10.1016/S1874-5733(08)80013-7. |