-
Previous Article
Paladins as predators: Invasive waves in a spatial evolutionary adversarial game
- DCDS-B Home
- This Issue
-
Next Article
The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime
Two-species particle aggregation and stability of co-dimension one solutions
1. | University of California, Los Angeles, Department of Mathematics, Box 951555, Los Angeles, CA 90095-1555, United States |
2. | Dalhousie University, Department of Mathematics and Statistics, Halifax, Nova Scotia, B3H 3J5 |
3. | University of California Los Angeles, Department of Mathematics, 520 Portola Plaza Box 951555, Los Angeles, CA 90095-1555 |
References:
[1] |
E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla and F. Wooten, Possible global minimum lattice configurations for Thomson's problem of charges on a sphere,, Physical Review Letters, 78 (1997), 2681.
doi: 10.1103/PhysRevLett.78.2681. |
[2] |
D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy,, Archive for Rational Mechanics and Analysis, 209 (2013), 1055.
doi: 10.1007/s00205-013-0644-6. |
[3] |
A. Bernoff and C. Topaz, A primer of swarm equilibria,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 212.
doi: 10.1137/100804504. |
[4] |
A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms,, preprint, (2013). Google Scholar |
[5] |
H. Cabral and D. Schmidt, Stability of relative equilibria in the problem of $n+1$ vortices,, SIAM Journal on Mathematical Analysis, 31 (1999), 231.
doi: 10.1137/S0036141098302124. |
[6] |
Y. Chen, T. Kolokolnikov and D. Zhirov, Collective behaviour of large number of vortices in the plane,, Proceedings of the Royal Society A, 469 (2013).
doi: 10.1098/rspa.2013.0085. |
[7] |
H. Cohn and A. Kumar, Algorithmic design of self-assembling structures,, PNAS, 106 (2009), 9570.
doi: 10.1073/pnas.0901636106. |
[8] |
C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European Journal of Applied Mathematics, 22 (2011), 553.
doi: 10.1017/S0956792511000258. |
[9] |
I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move,, Nature, 433 (2005), 513.
doi: 10.1038/nature03236. |
[10] |
G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications, 20 (2013), 523.
doi: 10.1007/s00030-012-0164-3. |
[11] |
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse,, Physical Review Letters, 96 (2006).
doi: 10.1103/PhysRevLett.96.104302. |
[12] |
B. Düring, P. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders,, Proceedings of the Royal Society A, 465 (2009), 3687.
doi: 10.1098/rspa.2009.0239. |
[13] |
C. Escudero, F. Macià, and J.J.L. Velázquez, Two-species-coagulation approach to consensus by group level interactions,, Physical Review E, 82 (2010).
doi: 10.1103/PhysRevE.82.016113. |
[14] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317.
doi: 10.1524/anly.2009.1029. |
[15] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model,, Nonlinearity, 24 (2011), 2681.
doi: 10.1088/0951-7715/24/10/002. |
[16] |
M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species,, Nonlinearity, 26 (2013), 2777.
doi: 10.1088/0951-7715/26/10/2777. |
[17] |
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods,, 1st ed., (1992). Google Scholar |
[18] |
D. Holm and V. Putkaradze, Aggregation of finite-size particles with variable mobility,, Physical Review Letters, 95 (2005).
doi: 10.1103/PhysRevLett.95.226106. |
[19] |
D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, Journal of Nonlinear Science, 21 (2011), 231.
doi: 10.1007/s00332-010-9082-x. |
[20] |
T. Kolokolnikov, Y. Huang and M. Pavlovski, Singular patterns for an aggregation model with a confining potential,, Physica D, 260 (2013), 65.
doi: 10.1016/j.physd.2012.10.009. |
[21] |
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions,, Physical Review E, 84 (2011).
doi: 10.1103/PhysRevE.84.015203. |
[22] |
T. Kostić and A. L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion,, Journal of Scientific Computing, 54 (2013), 513.
doi: 10.1007/s10915-012-9615-6. |
[23] |
H. Levine, E. Ben-Jacob, I. Cohen and W. Rappel, Swarming patterns in microorganisms: Some new modeling results,, in Decision and Control, (2006), 5073.
doi: 10.1109/CDC.2006.377435. |
[24] |
H. Levine, W. Rappel and I. Cohen, Self-organization in systems of self-propelled particles,, Physical Review E, 63 (2000).
doi: 10.1103/PhysRevE.63.017101. |
[25] |
Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33.
doi: 10.1016/j.physd.2007.05.007. |
[26] |
Y. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in IEEE International Conference on Robotics and Automation, (2007), 2292.
doi: 10.1109/ROBOT.2007.363661. |
[27] |
T. Liu, Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale?,, Langmuir, 26 (2010), 9202.
doi: 10.1021/la902917q. |
[28] |
T. Liu, M. Langston, D. Li, J. M. Pigga, C. Pichon, A. Todea and A. Müller, Self-recognition among different polyprotic macroions during assembly processes in dilute solution,, Science, 331 (2011), 1590.
doi: 10.1126/science.1201121. |
[29] |
A. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).
|
[30] |
A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, Journal of mathematical biology, 47 (2003), 353.
doi: 10.1007/s00285-003-0209-7. |
[31] |
R. Ramírez and T. Pöschel, Coefficient of restitution of colliding viscoelastic spheres,, Physica Review E, 60 (1999).
doi: 10.1103/physreve.60.4465. |
[32] |
R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202511500230. |
[33] |
H. Sun, D. Uminsky and A. L. Bertozzi, A generalized Birkhoff-Rott equation for two-dimensional active scalar problems,, SIAM Journal on Applied Mathematics, 72 (2012), 382.
doi: 10.1137/110819883. |
[34] |
J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source,, Nonlinearity, 25 (2012), 1413.
doi: 10.1088/0951-7715/25/5/1413. |
[35] |
C. Topaz, A. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts,, The European Physical Journal Special Topics, 157 (2008), 93.
doi: 10.1140/epjst/e2008-00633-y. |
[36] |
C. Topaz, A. L. Bertozzi and M. E. Lewis, A nonlocal continuum model for biological aggregations,, Bulletin of Mathematical Biology, 68 (2006), 1601.
doi: 10.1007/s11538-006-9088-6. |
[37] |
L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet and W. N. Reynolds, Aggregation patterns in stressed bacteria,, Physical review letters, 75 (1995), 1859.
doi: 10.1103/PhysRevLett.75.1859. |
[38] |
J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical mechanics,, Journal of Nonlinear Science, 22 (2012), 935.
doi: 10.1007/s00332-012-9132-7. |
[39] |
J. von Brecht, D. Uminsky, T. Kolokolnikov and A. L. Bertozzi, Predicting pattern formation in particle interactions,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202511400021. |
[40] |
G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European Journal of Applied Mathematics, 13 (2002), 641.
doi: 10.1017/S0956792501004843. |
show all references
References:
[1] |
E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla and F. Wooten, Possible global minimum lattice configurations for Thomson's problem of charges on a sphere,, Physical Review Letters, 78 (1997), 2681.
doi: 10.1103/PhysRevLett.78.2681. |
[2] |
D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy,, Archive for Rational Mechanics and Analysis, 209 (2013), 1055.
doi: 10.1007/s00205-013-0644-6. |
[3] |
A. Bernoff and C. Topaz, A primer of swarm equilibria,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 212.
doi: 10.1137/100804504. |
[4] |
A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms,, preprint, (2013). Google Scholar |
[5] |
H. Cabral and D. Schmidt, Stability of relative equilibria in the problem of $n+1$ vortices,, SIAM Journal on Mathematical Analysis, 31 (1999), 231.
doi: 10.1137/S0036141098302124. |
[6] |
Y. Chen, T. Kolokolnikov and D. Zhirov, Collective behaviour of large number of vortices in the plane,, Proceedings of the Royal Society A, 469 (2013).
doi: 10.1098/rspa.2013.0085. |
[7] |
H. Cohn and A. Kumar, Algorithmic design of self-assembling structures,, PNAS, 106 (2009), 9570.
doi: 10.1073/pnas.0901636106. |
[8] |
C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European Journal of Applied Mathematics, 22 (2011), 553.
doi: 10.1017/S0956792511000258. |
[9] |
I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move,, Nature, 433 (2005), 513.
doi: 10.1038/nature03236. |
[10] |
G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications, 20 (2013), 523.
doi: 10.1007/s00030-012-0164-3. |
[11] |
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse,, Physical Review Letters, 96 (2006).
doi: 10.1103/PhysRevLett.96.104302. |
[12] |
B. Düring, P. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders,, Proceedings of the Royal Society A, 465 (2009), 3687.
doi: 10.1098/rspa.2009.0239. |
[13] |
C. Escudero, F. Macià, and J.J.L. Velázquez, Two-species-coagulation approach to consensus by group level interactions,, Physical Review E, 82 (2010).
doi: 10.1103/PhysRevE.82.016113. |
[14] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317.
doi: 10.1524/anly.2009.1029. |
[15] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model,, Nonlinearity, 24 (2011), 2681.
doi: 10.1088/0951-7715/24/10/002. |
[16] |
M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species,, Nonlinearity, 26 (2013), 2777.
doi: 10.1088/0951-7715/26/10/2777. |
[17] |
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods,, 1st ed., (1992). Google Scholar |
[18] |
D. Holm and V. Putkaradze, Aggregation of finite-size particles with variable mobility,, Physical Review Letters, 95 (2005).
doi: 10.1103/PhysRevLett.95.226106. |
[19] |
D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, Journal of Nonlinear Science, 21 (2011), 231.
doi: 10.1007/s00332-010-9082-x. |
[20] |
T. Kolokolnikov, Y. Huang and M. Pavlovski, Singular patterns for an aggregation model with a confining potential,, Physica D, 260 (2013), 65.
doi: 10.1016/j.physd.2012.10.009. |
[21] |
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions,, Physical Review E, 84 (2011).
doi: 10.1103/PhysRevE.84.015203. |
[22] |
T. Kostić and A. L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion,, Journal of Scientific Computing, 54 (2013), 513.
doi: 10.1007/s10915-012-9615-6. |
[23] |
H. Levine, E. Ben-Jacob, I. Cohen and W. Rappel, Swarming patterns in microorganisms: Some new modeling results,, in Decision and Control, (2006), 5073.
doi: 10.1109/CDC.2006.377435. |
[24] |
H. Levine, W. Rappel and I. Cohen, Self-organization in systems of self-propelled particles,, Physical Review E, 63 (2000).
doi: 10.1103/PhysRevE.63.017101. |
[25] |
Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33.
doi: 10.1016/j.physd.2007.05.007. |
[26] |
Y. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in IEEE International Conference on Robotics and Automation, (2007), 2292.
doi: 10.1109/ROBOT.2007.363661. |
[27] |
T. Liu, Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale?,, Langmuir, 26 (2010), 9202.
doi: 10.1021/la902917q. |
[28] |
T. Liu, M. Langston, D. Li, J. M. Pigga, C. Pichon, A. Todea and A. Müller, Self-recognition among different polyprotic macroions during assembly processes in dilute solution,, Science, 331 (2011), 1590.
doi: 10.1126/science.1201121. |
[29] |
A. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).
|
[30] |
A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, Journal of mathematical biology, 47 (2003), 353.
doi: 10.1007/s00285-003-0209-7. |
[31] |
R. Ramírez and T. Pöschel, Coefficient of restitution of colliding viscoelastic spheres,, Physica Review E, 60 (1999).
doi: 10.1103/physreve.60.4465. |
[32] |
R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202511500230. |
[33] |
H. Sun, D. Uminsky and A. L. Bertozzi, A generalized Birkhoff-Rott equation for two-dimensional active scalar problems,, SIAM Journal on Applied Mathematics, 72 (2012), 382.
doi: 10.1137/110819883. |
[34] |
J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source,, Nonlinearity, 25 (2012), 1413.
doi: 10.1088/0951-7715/25/5/1413. |
[35] |
C. Topaz, A. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts,, The European Physical Journal Special Topics, 157 (2008), 93.
doi: 10.1140/epjst/e2008-00633-y. |
[36] |
C. Topaz, A. L. Bertozzi and M. E. Lewis, A nonlocal continuum model for biological aggregations,, Bulletin of Mathematical Biology, 68 (2006), 1601.
doi: 10.1007/s11538-006-9088-6. |
[37] |
L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet and W. N. Reynolds, Aggregation patterns in stressed bacteria,, Physical review letters, 75 (1995), 1859.
doi: 10.1103/PhysRevLett.75.1859. |
[38] |
J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical mechanics,, Journal of Nonlinear Science, 22 (2012), 935.
doi: 10.1007/s00332-012-9132-7. |
[39] |
J. von Brecht, D. Uminsky, T. Kolokolnikov and A. L. Bertozzi, Predicting pattern formation in particle interactions,, Mathematical Models and Methods in Applied Sciences, 22 (2012).
doi: 10.1142/S0218202511400021. |
[40] |
G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European Journal of Applied Mathematics, 13 (2002), 641.
doi: 10.1017/S0956792501004843. |
[1] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[2] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[3] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[4] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[5] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[6] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[7] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[8] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[9] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[10] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[11] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[12] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[13] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[14] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[15] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[16] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[17] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[18] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[19] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[20] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]