July  2014, 19(5): 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

Paladins as predators: Invasive waves in a spatial evolutionary adversarial game

1. 

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States

Received  March 2012 Revised  August 2012 Published  April 2014

Invasive waves are numerically found in a variant of a reaction-diffusion system used to extend an evolutionary adversarial game into space wherein the influence of various strategies is allowed to diffuse. The diffusion of various strategies corresponds to peer-pressure. The invasive waves are driven by a nonlinear instability that enables an otherwise unstable state to travel through an initially uncooperative state leaving a cooperative state behind. The wave speed's dependence on the various diffusion parameters is examined in one- and two-dimensions through numerically solving the reaction-diffusion equations. Various other phenomena, such as pinning near a diffusive inhomogeneity, are also explored.
Citation: Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437
References:
[1]

G. Dee and J. S. Langer, Propagating pattern selection,, Phys. Rev. Lett., 50 (1983), 383.  doi: 10.1103/PhysRevLett.50.383.  Google Scholar

[2]

D. del Castillo-Negrete, B. Carreras and V. Lynch, Front propagation and segregation in a reaction-diffusion model with cross-diffusion,, Physica D: Nonlinear Phenomena, 168/169 (2002), 45.  doi: 10.1016/S0167-2789(02)00494-3.  Google Scholar

[3]

M. R. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental, adversarial game,, PloS one, 8 (2013).   Google Scholar

[4]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biol., 17 (1983), 11.  doi: 10.1007/BF00276112.  Google Scholar

[5]

S. R. Dunbar, Traveling wave solutions of diffusive lotka-volterra equations: A heteroclinic connection in r4,, Transactions of the American Mathematical Society, 286 (1984), 557.  doi: 10.2307/1999810.  Google Scholar

[6]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Human Genetics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[7]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, Journal of Mathematical Biology, 2 (1975), 251.  doi: 10.1007/BF00277154.  Google Scholar

[8]

M. Holzer and A. Scheel, A slow pushed front in a Lotka-Volterra competition model,, Nonlinearity, 25 (2012), 2151.  doi: 10.1088/0951-7715/25/7/2151.  Google Scholar

[9]

X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete Contin. Dyn. Syst., 26 (2010), 265.  doi: 10.3934/dcds.2010.26.265.  Google Scholar

[10]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique,, Mosc. Univ. Bull. Math., 1 (1937), 1.   Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[15]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[16]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[17]

S. McCalla, 2D invasion movie,, , (2012).   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ -Piskonov,, Comm. Pure Appl. Math., 28 (1975), 323.  doi: 10.1002/cpa.3160280302.  Google Scholar

[20]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, Journal of Mathematical Biology, 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[21]

J. A. Sherratt, M. A. Lewis and A. C. Fowler, Ecological chaos in the wake of invasion,, Proceedings of the National Academy of Sciences, 92 (1995), 2524.  doi: 10.1073/pnas.92.7.2524.  Google Scholar

[22]

J. A. Sherratt, On the evolution of periodic plane waves in reaction-diffusion systems of $\lambda $-$\omega$ type,, SIAM Journal on Applied Mathematics, 54 (1994), 1374.  doi: 10.1137/S0036139993243746.  Google Scholar

[23]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, Journal of Theoretical Biology, 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[24]

M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society,, Phys. Rev. E, 82 (2010).  doi: 10.1103/PhysRevE.82.066114.  Google Scholar

[25]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Physics Reports, 446 (2007), 97.  doi: 10.1016/j.physrep.2007.04.004.  Google Scholar

[26]

G. Szabó and C. Hauert, Phase transitions and volunteering in spatial public goods games,, Phys. Rev. Lett., 89 (2002).  doi: 10.1103/PhysRevLett.89.118101.  Google Scholar

[27]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.   Google Scholar

[28]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Syst., 32 (2012), 3303.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[29]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[30]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

show all references

References:
[1]

G. Dee and J. S. Langer, Propagating pattern selection,, Phys. Rev. Lett., 50 (1983), 383.  doi: 10.1103/PhysRevLett.50.383.  Google Scholar

[2]

D. del Castillo-Negrete, B. Carreras and V. Lynch, Front propagation and segregation in a reaction-diffusion model with cross-diffusion,, Physica D: Nonlinear Phenomena, 168/169 (2002), 45.  doi: 10.1016/S0167-2789(02)00494-3.  Google Scholar

[3]

M. R. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental, adversarial game,, PloS one, 8 (2013).   Google Scholar

[4]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biol., 17 (1983), 11.  doi: 10.1007/BF00276112.  Google Scholar

[5]

S. R. Dunbar, Traveling wave solutions of diffusive lotka-volterra equations: A heteroclinic connection in r4,, Transactions of the American Mathematical Society, 286 (1984), 557.  doi: 10.2307/1999810.  Google Scholar

[6]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Human Genetics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[7]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, Journal of Mathematical Biology, 2 (1975), 251.  doi: 10.1007/BF00277154.  Google Scholar

[8]

M. Holzer and A. Scheel, A slow pushed front in a Lotka-Volterra competition model,, Nonlinearity, 25 (2012), 2151.  doi: 10.1088/0951-7715/25/7/2151.  Google Scholar

[9]

X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete Contin. Dyn. Syst., 26 (2010), 265.  doi: 10.3934/dcds.2010.26.265.  Google Scholar

[10]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique,, Mosc. Univ. Bull. Math., 1 (1937), 1.   Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[15]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[16]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[17]

S. McCalla, 2D invasion movie,, , (2012).   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ -Piskonov,, Comm. Pure Appl. Math., 28 (1975), 323.  doi: 10.1002/cpa.3160280302.  Google Scholar

[20]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, Journal of Mathematical Biology, 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[21]

J. A. Sherratt, M. A. Lewis and A. C. Fowler, Ecological chaos in the wake of invasion,, Proceedings of the National Academy of Sciences, 92 (1995), 2524.  doi: 10.1073/pnas.92.7.2524.  Google Scholar

[22]

J. A. Sherratt, On the evolution of periodic plane waves in reaction-diffusion systems of $\lambda $-$\omega$ type,, SIAM Journal on Applied Mathematics, 54 (1994), 1374.  doi: 10.1137/S0036139993243746.  Google Scholar

[23]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, Journal of Theoretical Biology, 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[24]

M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society,, Phys. Rev. E, 82 (2010).  doi: 10.1103/PhysRevE.82.066114.  Google Scholar

[25]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Physics Reports, 446 (2007), 97.  doi: 10.1016/j.physrep.2007.04.004.  Google Scholar

[26]

G. Szabó and C. Hauert, Phase transitions and volunteering in spatial public goods games,, Phys. Rev. Lett., 89 (2002).  doi: 10.1103/PhysRevLett.89.118101.  Google Scholar

[27]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.   Google Scholar

[28]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Syst., 32 (2012), 3303.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[29]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[30]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[17]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[20]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]