July  2014, 19(5): 1479-1506. doi: 10.3934/dcdsb.2014.19.1479

Cops on the dots in a mathematical model of urban crime and police response

1. 

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States

2. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

3. 

Department of Mathematics, University of California Los Angeles, Los Angeles, CA, 90095

Received  January 2013 Revised  January 2014 Published  April 2014

Hotspots of crime localized in space and time are well documented. Previous mathematical models of urban crime have exhibited these hotspots but considered a static or otherwise suboptimal police response to them. We introduce a program of police response to hotspots of crime in which the police adapt dynamically to changing crime patterns. In particular, they choose their deployment to solve an optimal control problem at every time. This gives rise to a free boundary problem for the police deployment's spatial support. We present an efficient algorithm for solving this problem numerically and show that police presence can prompt surprising interactions among adjacent hotspots.
Citation: Joseph R. Zipkin, Martin B. Short, Andrea L. Bertozzi. Cops on the dots in a mathematical model of urban crime and police response. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1479-1506. doi: 10.3934/dcdsb.2014.19.1479
References:
[1]

H. Berestycki and J.-P. Nadal, Self-organised critical hot spots of criminal activity, Eur. J. Appl. Math., 21 (2010), 371-399. doi: 10.1017/S0956792510000185.

[2]

H. Berestycki, N. Rodríguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11 (2013), 1097-1126.arXiv:1302.4333 doi: 10.1137/12089884X.

[3]

D. Birks, M. Townsley and A. Stewart, Generative explanations of crime: Using simulation to test criminological theory, Criminology, 50 (2012), 221-254. doi: 10.1111/j.1745-9125.2011.00258.x.

[4]

A. A. Braga, The effects of hot spots policing on crime, Ann. Am. Acad. Polit. S. S., 578 (2001), 104-125.

[5]

P. J. Brantingham and P. L. Brantingham, Patterns in Crime, Macmillan, 1984.

[6]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[7]

R. S. Cantrell, C. Cosner and R. Manásevich, Global bifurcation of solutions for crime modeling equations, SIAM J. Math. Anal., 44 (2012), 1340-1358. doi: 10.1137/110843356.

[8]

S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov and S. G. McCalla., Crime modeling with Lévy flights, SIAM J. Appl. Math., 73 (2013), 1703-1720. doi: 10.1137/120895408.

[9]

J. E. Eck and D. Weisburd, Crime places in crime theory, in Crime and Place: Crime Prevention Studies (eds. John E. Eck and David Weisburd), Criminal Justice Press, (1995), 1-33.

[10]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[11]

S. D. Johnson, K. Bowers and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, British J. Criminol, 37 (1997), 224-241. doi: 10.1093/oxfordjournals.bjc.a014156.

[12]

Paul A. Jones, P. J. Brantingham and L. R. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, Math. Mod. Meth. Appl. S., 20 (2010), 1397-1423. doi: 10.1142/S0218202510004647.

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[14]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[15]

T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, to appear in Discrete Cont. Dyn.-B, arXiv:1201.3090.

[16]

A. B. Pitcher, Adding police to a mathematical model of burglary, Eur. J. Appl. Math., 21 (2010), 401-419. doi: 10.1017/S0956792510000112.

[17]

N. Rodríguez, On the global well-posedness theory for a class of {PDE} models for criminal activity, Physica D, 260 (2013), 191-200. doi: 10.1016/j.physd.2012.08.003.

[18]

N. Rodríguez and A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Mod. Meth. Appl. S., 20 (2010), 1425-1457. doi: 10.1142/S0218202510004696.

[19]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Mod. Meth. Appl. S., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029.

[20]

M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9 (2010), 462-483. doi: 10.1137/090759069.

[21]

M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, P. Natl. Acad. Sci. USA, 107 (2010), 3961-3965. doi: 10.1073/pnas.0910921107.

[22]

H. Sun, Continuum Equations for Crime Modeling with Random Process, unpublished report, UCLA, 2010.

[23]

M. Townsley, S. D. Johnson and J. H. Ratcliffe, Space time dynamics of insurgent activity in Iraq, Security J., 21 (2008), 139-146. doi: 10.1057/palgrave.sj.8350090.

[24]

Y. Yao and A. L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D, 260 (2013), 77-89. doi: 10.1016/j.physd.2013.01.009.

show all references

References:
[1]

H. Berestycki and J.-P. Nadal, Self-organised critical hot spots of criminal activity, Eur. J. Appl. Math., 21 (2010), 371-399. doi: 10.1017/S0956792510000185.

[2]

H. Berestycki, N. Rodríguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11 (2013), 1097-1126.arXiv:1302.4333 doi: 10.1137/12089884X.

[3]

D. Birks, M. Townsley and A. Stewart, Generative explanations of crime: Using simulation to test criminological theory, Criminology, 50 (2012), 221-254. doi: 10.1111/j.1745-9125.2011.00258.x.

[4]

A. A. Braga, The effects of hot spots policing on crime, Ann. Am. Acad. Polit. S. S., 578 (2001), 104-125.

[5]

P. J. Brantingham and P. L. Brantingham, Patterns in Crime, Macmillan, 1984.

[6]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[7]

R. S. Cantrell, C. Cosner and R. Manásevich, Global bifurcation of solutions for crime modeling equations, SIAM J. Math. Anal., 44 (2012), 1340-1358. doi: 10.1137/110843356.

[8]

S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov and S. G. McCalla., Crime modeling with Lévy flights, SIAM J. Appl. Math., 73 (2013), 1703-1720. doi: 10.1137/120895408.

[9]

J. E. Eck and D. Weisburd, Crime places in crime theory, in Crime and Place: Crime Prevention Studies (eds. John E. Eck and David Weisburd), Criminal Justice Press, (1995), 1-33.

[10]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[11]

S. D. Johnson, K. Bowers and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, British J. Criminol, 37 (1997), 224-241. doi: 10.1093/oxfordjournals.bjc.a014156.

[12]

Paul A. Jones, P. J. Brantingham and L. R. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, Math. Mod. Meth. Appl. S., 20 (2010), 1397-1423. doi: 10.1142/S0218202510004647.

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[14]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[15]

T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, to appear in Discrete Cont. Dyn.-B, arXiv:1201.3090.

[16]

A. B. Pitcher, Adding police to a mathematical model of burglary, Eur. J. Appl. Math., 21 (2010), 401-419. doi: 10.1017/S0956792510000112.

[17]

N. Rodríguez, On the global well-posedness theory for a class of {PDE} models for criminal activity, Physica D, 260 (2013), 191-200. doi: 10.1016/j.physd.2012.08.003.

[18]

N. Rodríguez and A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Mod. Meth. Appl. S., 20 (2010), 1425-1457. doi: 10.1142/S0218202510004696.

[19]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Mod. Meth. Appl. S., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029.

[20]

M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9 (2010), 462-483. doi: 10.1137/090759069.

[21]

M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, P. Natl. Acad. Sci. USA, 107 (2010), 3961-3965. doi: 10.1073/pnas.0910921107.

[22]

H. Sun, Continuum Equations for Crime Modeling with Random Process, unpublished report, UCLA, 2010.

[23]

M. Townsley, S. D. Johnson and J. H. Ratcliffe, Space time dynamics of insurgent activity in Iraq, Security J., 21 (2008), 139-146. doi: 10.1057/palgrave.sj.8350090.

[24]

Y. Yao and A. L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D, 260 (2013), 77-89. doi: 10.1016/j.physd.2013.01.009.

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[3]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[6]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087

[7]

Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660

[8]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[9]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations and Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[10]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[11]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[12]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[13]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[14]

Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022042

[15]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[16]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[17]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[18]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[19]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[20]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (212)
  • HTML views (0)
  • Cited by (24)

[Back to Top]