August  2014, 19(6): 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

Traveling wave in backward and forward parabolic equations from population dynamics

1. 

College of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Received  October 2013 Revised  February 2014 Published  June 2014

This work is concerned with the properties of the traveling wave of the backward and forward parabolic equation \begin{equation*} u_t= [ D(u)u_x]_x + g(u),\quad t\geq 0, x\in \mathbb{R}, \end{equation*} where $D(u)$ changes its sign once, from negative to positive value, in the interval $u\in [0,1]$ and $g(u)$ is a mono-stable nonlinear reaction term. The existence of infinitely many traveling wave solutions is proven. These traveling waves are parameterized by their wave speed and monotonically connect the stationary states $u\equiv0$ and $u\equiv 1$.
Citation: Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507
References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.   Google Scholar

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163.  doi: 10.1007/BF00160178.  Google Scholar

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281.  doi: 10.1006/jdeq.1995.1055.  Google Scholar

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455.  doi: 10.3934/dcdsb.2010.13.455.  Google Scholar

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).   Google Scholar

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546.  doi: 10.1017/S0956792504005571.  Google Scholar

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).   Google Scholar

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819.  doi: 10.3934/dcdsb.2011.16.819.  Google Scholar

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941.  doi: 10.1080/03605300701318955.  Google Scholar

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301.  doi: 10.3934/dcds.2010.27.301.  Google Scholar

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175.  doi: 10.3934/dcdsb.2006.6.1175.  Google Scholar

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457.  doi: 10.1080/03605309808821353.  Google Scholar

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

show all references

References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.   Google Scholar

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163.  doi: 10.1007/BF00160178.  Google Scholar

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281.  doi: 10.1006/jdeq.1995.1055.  Google Scholar

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455.  doi: 10.3934/dcdsb.2010.13.455.  Google Scholar

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).   Google Scholar

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546.  doi: 10.1017/S0956792504005571.  Google Scholar

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).   Google Scholar

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819.  doi: 10.3934/dcdsb.2011.16.819.  Google Scholar

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941.  doi: 10.1080/03605300701318955.  Google Scholar

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301.  doi: 10.3934/dcds.2010.27.301.  Google Scholar

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175.  doi: 10.3934/dcdsb.2006.6.1175.  Google Scholar

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457.  doi: 10.1080/03605309808821353.  Google Scholar

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]