August  2014, 19(6): 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

Traveling wave in backward and forward parabolic equations from population dynamics

1. 

College of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Received  October 2013 Revised  February 2014 Published  June 2014

This work is concerned with the properties of the traveling wave of the backward and forward parabolic equation \begin{equation*} u_t= [ D(u)u_x]_x + g(u),\quad t\geq 0, x\in \mathbb{R}, \end{equation*} where $D(u)$ changes its sign once, from negative to positive value, in the interval $u\in [0,1]$ and $g(u)$ is a mono-stable nonlinear reaction term. The existence of infinitely many traveling wave solutions is proven. These traveling waves are parameterized by their wave speed and monotonically connect the stationary states $u\equiv0$ and $u\equiv 1$.
Citation: Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507
References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813. doi: 10.1088/0951-7715/22/12/002.

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163. doi: 10.1007/BF00160178.

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055.

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455. doi: 10.3934/dcdsb.2010.13.455.

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546. doi: 10.1017/S0956792504005571.

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819. doi: 10.3934/dcdsb.2011.16.819.

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941. doi: 10.1080/03605300701318955.

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301. doi: 10.3934/dcds.2010.27.301.

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175. doi: 10.3934/dcdsb.2006.6.1175.

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471. doi: 10.1016/j.jde.2003.06.005.

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457. doi: 10.1080/03605309808821353.

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.1-2.196.

show all references

References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813. doi: 10.1088/0951-7715/22/12/002.

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163. doi: 10.1007/BF00160178.

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055.

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455. doi: 10.3934/dcdsb.2010.13.455.

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546. doi: 10.1017/S0956792504005571.

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819. doi: 10.3934/dcdsb.2011.16.819.

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941. doi: 10.1080/03605300701318955.

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301. doi: 10.3934/dcds.2010.27.301.

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175. doi: 10.3934/dcdsb.2006.6.1175.

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471. doi: 10.1016/j.jde.2003.06.005.

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457. doi: 10.1080/03605309808821353.

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.1-2.196.

[1]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[2]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[3]

Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175

[4]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[5]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[6]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[7]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189

[8]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[9]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[10]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[11]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[12]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[13]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[14]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[15]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[16]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[17]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[18]

Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075

[19]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[20]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]