August  2014, 19(6): 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

Traveling wave in backward and forward parabolic equations from population dynamics

1. 

College of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Received  October 2013 Revised  February 2014 Published  June 2014

This work is concerned with the properties of the traveling wave of the backward and forward parabolic equation \begin{equation*} u_t= [ D(u)u_x]_x + g(u),\quad t\geq 0, x\in \mathbb{R}, \end{equation*} where $D(u)$ changes its sign once, from negative to positive value, in the interval $u\in [0,1]$ and $g(u)$ is a mono-stable nonlinear reaction term. The existence of infinitely many traveling wave solutions is proven. These traveling waves are parameterized by their wave speed and monotonically connect the stationary states $u\equiv0$ and $u\equiv 1$.
Citation: Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507
References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.   Google Scholar

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163.  doi: 10.1007/BF00160178.  Google Scholar

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281.  doi: 10.1006/jdeq.1995.1055.  Google Scholar

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455.  doi: 10.3934/dcdsb.2010.13.455.  Google Scholar

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).   Google Scholar

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546.  doi: 10.1017/S0956792504005571.  Google Scholar

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).   Google Scholar

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819.  doi: 10.3934/dcdsb.2011.16.819.  Google Scholar

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941.  doi: 10.1080/03605300701318955.  Google Scholar

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301.  doi: 10.3934/dcds.2010.27.301.  Google Scholar

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175.  doi: 10.3934/dcdsb.2006.6.1175.  Google Scholar

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457.  doi: 10.1080/03605309808821353.  Google Scholar

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

show all references

References:
[1]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models,, Advances in Dynamical Systems and Applications, 4 (2009), 19.   Google Scholar

[3]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[4]

F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, J. Math. Biol., 33 (1994), 163.  doi: 10.1007/BF00160178.  Google Scholar

[5]

F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equation, 117 (1995), 281.  doi: 10.1006/jdeq.1995.1055.  Google Scholar

[6]

F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics,, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455.  doi: 10.3934/dcdsb.2010.13.455.  Google Scholar

[7]

K. P. Hadeler, Travelling fronts and free boundary value problems,, In Albretch, (1981).   Google Scholar

[8]

D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum,, Euro. Jnl of Applied Mathematics, 15 (2004), 546.  doi: 10.1017/S0956792504005571.  Google Scholar

[9]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem,, (English translation containing the relvent results) In OLiveira-Pinto, (1982).   Google Scholar

[10]

M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819.  doi: 10.3934/dcdsb.2011.16.819.  Google Scholar

[11]

T. Laurent, Local and global existence for an aggregation equation,, Comm. Partial Diff. Eqns., 32 (2007), 1941.  doi: 10.1080/03605300701318955.  Google Scholar

[12]

D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion,, Discrete and Continuous Dynamical Systems, 27 (2010), 301.  doi: 10.3934/dcds.2010.27.301.  Google Scholar

[13]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175.  doi: 10.3934/dcdsb.2006.6.1175.  Google Scholar

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[15]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations,, J. Differential Equation, 195 (2003), 471.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[16]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Diff. Eqns., 23 (1998), 457.  doi: 10.1080/03605309808821353.  Google Scholar

[17]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[1]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[2]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[3]

Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175

[4]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[5]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020047

[6]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[7]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[8]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189

[9]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[10]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[11]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[12]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[13]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[14]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[15]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020001

[16]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[17]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[18]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[19]

Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066

[20]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]