-
Previous Article
Symmetric periodic orbits in three sub-problems of the $N$-body problem
- DCDS-B Home
- This Issue
- Next Article
Traveling wave in backward and forward parabolic equations from population dynamics
1. | College of Mathematics, Jilin University, Changchun, Jilin 130012, China |
2. | Department of Mathematics, Michigan State University, East Lansing, MI 48824 |
References:
[1] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.
doi: 10.1088/0951-7715/22/12/002. |
[2] |
L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models, Advances in Dynamical Systems and Applications, 4 (2009), 19-33. |
[3] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[4] |
F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations, J. Math. Biol., 33 (1994), 163-192.
doi: 10.1007/BF00160178. |
[5] |
F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Differential Equation, 117 (1995), 281-319.
doi: 10.1006/jdeq.1995.1055. |
[6] |
F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455-487.
doi: 10.3934/dcdsb.2010.13.455. |
[7] |
K. P. Hadeler, Travelling fronts and free boundary value problems, In Albretch, J. Collatz, L. Hoffman, K. H. (eds.) Numerical Treatment of Free Boundary Value Problems. Basel: Birkhauser, 1981. |
[8] |
D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum, Euro. Jnl of Applied Mathematics, 15 (2004), 546-576.
doi: 10.1017/S0956792504005571. |
[9] |
A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, (English translation containing the relvent results) In OLiveira-Pinto, F., Conolly, B.W.(eds.) Applicable mathematics of non-physical phenomena}. New York: Wiley, 1982. |
[10] |
M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819-833.
doi: 10.3934/dcdsb.2011.16.819. |
[11] |
T. Laurent, Local and global existence for an aggregation equation, Comm. Partial Diff. Eqns., 32 (2007), 1941-1964.
doi: 10.1080/03605300701318955. |
[12] |
D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion, Discrete and Continuous Dynamical Systems, 27 (2010), 301-323.
doi: 10.3934/dcds.2010.27.301. |
[13] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175-1189.
doi: 10.3934/dcdsb.2006.6.1175. |
[14] |
L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164.
doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J. |
[15] |
L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equation, 195 (2003), 471-496.
doi: 10.1016/j.jde.2003.06.005. |
[16] |
V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Comm. Partial Diff. Eqns., 23 (1998), 457-486.
doi: 10.1080/03605309808821353. |
[17] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196. |
show all references
References:
[1] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.
doi: 10.1088/0951-7715/22/12/002. |
[2] |
L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation models, Advances in Dynamical Systems and Applications, 4 (2009), 19-33. |
[3] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[4] |
F. S. Garduño and P. K. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations, J. Math. Biol., 33 (1994), 163-192.
doi: 10.1007/BF00160178. |
[5] |
F. S. Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Differential Equation, 117 (1995), 281-319.
doi: 10.1006/jdeq.1995.1055. |
[6] |
F. S. Garduño, P. K. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and taravelling wave dynamics, Discrete and Continuous Dynamical Systerms Series B, 13 (2010), 455-487.
doi: 10.3934/dcdsb.2010.13.455. |
[7] |
K. P. Hadeler, Travelling fronts and free boundary value problems, In Albretch, J. Collatz, L. Hoffman, K. H. (eds.) Numerical Treatment of Free Boundary Value Problems. Basel: Birkhauser, 1981. |
[8] |
D. Horstmann, K. J. Painter and H. G. Othmer, Aggregation under local reinforcement: From lattice to continuum, Euro. Jnl of Applied Mathematics, 15 (2004), 546-576.
doi: 10.1017/S0956792504005571. |
[9] |
A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, (English translation containing the relvent results) In OLiveira-Pinto, F., Conolly, B.W.(eds.) Applicable mathematics of non-physical phenomena}. New York: Wiley, 1982. |
[10] |
M. Kuzmin and S. Ruggerini, Front Propagation in Diffusion-Aggregation Models with Bi-Stable Reaction, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 819-833.
doi: 10.3934/dcdsb.2011.16.819. |
[11] |
T. Laurent, Local and global existence for an aggregation equation, Comm. Partial Diff. Eqns., 32 (2007), 1941-1964.
doi: 10.1080/03605300701318955. |
[12] |
D. Li and X. Zhang, On a nonlocal aggregation model with nolinear diffusion, Discrete and Continuous Dynamical Systems, 27 (2010), 301-323.
doi: 10.3934/dcds.2010.27.301. |
[13] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete and Continuous Dynamical Systerms Series B, 6 (2006), 1175-1189.
doi: 10.3934/dcdsb.2006.6.1175. |
[14] |
L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164.
doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J. |
[15] |
L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equation, 195 (2003), 471-496.
doi: 10.1016/j.jde.2003.06.005. |
[16] |
V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Comm. Partial Diff. Eqns., 23 (1998), 457-486.
doi: 10.1080/03605309808821353. |
[17] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196. |
[1] |
Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455 |
[2] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[3] |
Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175 |
[4] |
Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic and Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035 |
[5] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118 |
[6] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[7] |
Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[10] |
Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101 |
[11] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83 |
[14] |
Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 |
[15] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[16] |
Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265 |
[17] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[18] |
F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239 |
[19] |
Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205 |
[20] |
Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]