August  2014, 19(6): 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

Symmetric periodic orbits in three sub-problems of the $N$-body problem

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

Received  November 2013 Revised  March 2014 Published  June 2014

We study three sub-problems of the $N$-body problem that have two degrees of freedom, namely the $n-$pyramidal problem, the planar double-polygon problem, and the spatial double-polygon problem. We prove the existence of several families of symmetric periodic orbits, including ``Schubart-like" orbits and brake orbits, by using topological shooting arguments.
Citation: Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523
References:
[1]

R. Broucke, On the isosceles triangle configuration in the planar general three body problem,, Astron. Astrophys., 73 (1979), 303.   Google Scholar

[2]

N. C. Chen, Periodic brake orbits in the planar isosceles three-body problem,, Nonlinearity, 26 (2013), 2875.  doi: 10.1088/0951-7715/26/10/2875.  Google Scholar

[3]

J. Delgado and C. Vidal, The tetrahedral $4$-body problem,, J. Dynam. Differential Equations, 11 (1999), 735.  doi: 10.1023/A:1022667613764.  Google Scholar

[4]

D. Ferrario and A. Portaluri, On the dihedral $n$-body problem,, Nonlinearity, 21 (2008), 1307.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[5]

R. Martínez, On the existence of doubly symmetric "Schubart-like" periodic orbits,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[6]

R. Martínez, Families of double symmetric ‘Schubart-like' periodic orbits,, Celest. Mech. Dyn. Astr., 117 (2013), 217.  doi: 10.1007/s10569-013-9509-4.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, R. Montgomery and A. Venturelli, From brake to syzygy,, Arch. Ration. Mech. Anal., 204 (2012), 1009.  doi: 10.1007/s00205-012-0502-y.  Google Scholar

[9]

R. Moeckel and C. Simó, Bifurcation of spatial central configurations from planar ones,, SIAM J. Math. Anal., 26 (1995), 978.  doi: 10.1137/S0036141093248414.  Google Scholar

[10]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[11]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astron. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[12]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[13]

C. Simó, Analysis of triple collision in the isosceles problem,, in Classical Mechanics and Dynamical Systems, (1981), 203.   Google Scholar

[14]

C. Simó and R. Martínez, Qualitative study of the planar isosceles three-body problem,, Celest. Mech. Dyn. Astr., 41 (): 179.  doi: 10.1007/BF01238762.  Google Scholar

[15]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

show all references

References:
[1]

R. Broucke, On the isosceles triangle configuration in the planar general three body problem,, Astron. Astrophys., 73 (1979), 303.   Google Scholar

[2]

N. C. Chen, Periodic brake orbits in the planar isosceles three-body problem,, Nonlinearity, 26 (2013), 2875.  doi: 10.1088/0951-7715/26/10/2875.  Google Scholar

[3]

J. Delgado and C. Vidal, The tetrahedral $4$-body problem,, J. Dynam. Differential Equations, 11 (1999), 735.  doi: 10.1023/A:1022667613764.  Google Scholar

[4]

D. Ferrario and A. Portaluri, On the dihedral $n$-body problem,, Nonlinearity, 21 (2008), 1307.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[5]

R. Martínez, On the existence of doubly symmetric "Schubart-like" periodic orbits,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[6]

R. Martínez, Families of double symmetric ‘Schubart-like' periodic orbits,, Celest. Mech. Dyn. Astr., 117 (2013), 217.  doi: 10.1007/s10569-013-9509-4.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, R. Montgomery and A. Venturelli, From brake to syzygy,, Arch. Ration. Mech. Anal., 204 (2012), 1009.  doi: 10.1007/s00205-012-0502-y.  Google Scholar

[9]

R. Moeckel and C. Simó, Bifurcation of spatial central configurations from planar ones,, SIAM J. Math. Anal., 26 (1995), 978.  doi: 10.1137/S0036141093248414.  Google Scholar

[10]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[11]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astron. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[12]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[13]

C. Simó, Analysis of triple collision in the isosceles problem,, in Classical Mechanics and Dynamical Systems, (1981), 203.   Google Scholar

[14]

C. Simó and R. Martínez, Qualitative study of the planar isosceles three-body problem,, Celest. Mech. Dyn. Astr., 41 (): 179.  doi: 10.1007/BF01238762.  Google Scholar

[15]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[1]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[2]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[3]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[4]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

[5]

Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057

[6]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[7]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[8]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[9]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[10]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[11]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[12]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[13]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[14]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[15]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[16]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[17]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[18]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[19]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[20]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]