Citation: |
[1] |
R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303-313. |
[2] |
N. C. Chen, Periodic brake orbits in the planar isosceles three-body problem, Nonlinearity, 26 (2013), 2875-2898.doi: 10.1088/0951-7715/26/10/2875. |
[3] |
J. Delgado and C. Vidal, The tetrahedral $4$-body problem, J. Dynam. Differential Equations, 11 (1999), 735-780.doi: 10.1023/A:1022667613764. |
[4] |
D. Ferrario and A. Portaluri, On the dihedral $n$-body problem, Nonlinearity, 21 (2008), 1307-1321.doi: 10.1088/0951-7715/21/6/009. |
[5] |
R. Martínez, On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.doi: 10.3934/dcdsb.2012.17.943. |
[6] |
R. Martínez, Families of double symmetric ‘Schubart-like' periodic orbits, Celest. Mech. Dyn. Astr., 117 (2013), 217-243.doi: 10.1007/s10569-013-9509-4. |
[7] |
R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.doi: 10.1007/BF01390175. |
[8] |
R. Moeckel, R. Montgomery and A. Venturelli, From brake to syzygy, Arch. Ration. Mech. Anal., 204 (2012), 1009-1060.doi: 10.1007/s00205-012-0502-y. |
[9] |
R. Moeckel and C. Simó, Bifurcation of spatial central configurations from planar ones, SIAM J. Math. Anal., 26 (1995), 978-998.doi: 10.1137/S0036141093248414. |
[10] |
R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.doi: 10.3934/dcdsb.2008.10.609. |
[11] |
J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astron. Nachr., 283 (1956), 17-22.doi: 10.1002/asna.19562830105. |
[12] |
M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.doi: 10.1007/s00205-010-0334-6. |
[13] |
C. Simó, Analysis of triple collision in the isosceles problem, in Classical Mechanics and Dynamical Systems, (eds. R L Devaney and Z H Nitecki ), New York: Marcel Dekker, (1981), 203-224. |
[14] |
C. Simó and R. Martínez, Qualitative study of the planar isosceles three-body problem, Celest. Mech. Dyn. Astr., 41 (1987/88), 179-251. doi: 10.1007/BF01238762. |
[15] |
A. Venturelli, A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.doi: 10.3934/dcdsb.2008.10.699. |