Citation: |
[1] |
L. M. Abia and J. C. Lopez-Marcos, Runge-Kutta methods for age-structured population models, Appl. Numer. Math., 17 (1995), 1-17.doi: 10.1016/0168-9274(95)00010-R. |
[2] |
B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10-49.doi: 10.1016/j.cam.2005.02.004. |
[3] |
B. M. Adams, H. T. Banks, H. D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Math. Biosci. Eng., 1 (2004), 223-241.doi: 10.3934/mbe.2004.1.223. |
[4] |
J. Alvarez-Ramirez, M. Meraz and J. X. Velasco-Hernandez, Feedback control of the chemotherapy of HIV, Int. J. Bifur. Chaos, 10 (2000), 2207-2219.doi: 10.1142/S0218127400001377. |
[5] |
S. H. Bajaria, G. Webb and D. E. Kirschner, Predicting differential responses to structured treatment interruptions during HAART, Bull. Math. Biol., 66 (2004), 1093-1118.doi: 10.1016/j.bulm.2003.11.003. |
[6] |
H. T. Banks, T. Jang and H.-D. Kwon, Feedback control of HIV antiviral therapy with long measurement time, Int. J. Pure Appl. Math., 66 (2011), 461-485. |
[7] |
H. T. Banks, H.-D. Kwon, J. A. Toivanen and H. T. Tran, A state-dependent Riccati equation-based estimator approach for HIV feedback control, Optimal Control Appl. Methods, 27 (2006), 93-121.doi: 10.1002/oca.773. |
[8] |
M. E. Brandt and G. Chen, Feedback control of a biodynamical model of HIV-1, IEEE Trans. on Biom. Engrg., 48 (2001), 754-759.doi: 10.1109/10.930900. |
[9] |
D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull, Math. Biol., 64 (2002), 29-64.doi: 10.1006/bulm.2001.0266. |
[10] |
K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electronic J. of Differential Equation, (1998), 1-12. |
[11] |
M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2003. |
[12] |
A. V. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci., 93 (1996), 7247-7251.doi: 10.1073/pnas.93.14.7247. |
[13] |
T. Jang, H. D. Kwon and J. Lee, Free terminal time optimal control problem of an HIV model based on a conjugate gradient method, Bull. Math. Biol., 73 (2011), 2408-2429.doi: 10.1007/s11538-011-9630-z. |
[14] |
D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.doi: 10.1007/s002850050076. |
[15] |
D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS, Bull. Math. Biol., 58 (1996), 367-390.doi: 10.1007/BF02458312. |
[16] |
H. D. Kwon, J. Lee, and S.-D. Yang, Optimal control of an age-structured model of HIV infection, Appl. Math. Comput., 219 (2012), 2766-2779.doi: 10.1016/j.amc.2012.09.003. |
[17] |
J. Lisziewicz, E. Rosenberg, J. Lieberman, H. Jessen, L. Lopalco, R. Siliciano and F. Lori, Control of HIV despite the discontinuation of antiretroviral therapy, New England J. Med., 340 (1999), 1683-1684.doi: 10.1056/NEJM199905273402114. |
[18] |
M. Martcheva and C. Castillo-Chavez, Diseases with chronic stage in a population with varying size, Math. Biosci., 182 (2003), 1-25.doi: 10.1016/S0025-5564(02)00184-0. |
[19] |
A. R. McLean and S. D. W. Frost, Zidovudine and HIV: Mathematical models of within-host population dynamics, Reviews in Medical Virology, 5 (1995), 141-147.doi: 10.1002/rmv.1980050304. |
[20] |
F. A. Milner, M. Iannelli and Z. Feng, A two-strain tuberculosis model with age of infection, SIAM J. Appl. Math., 62 (2002), 1634-1656.doi: 10.1137/S003613990038205X. |
[21] |
H. Moore and W. Gu, A mathematical model for treatment-resistant mutations of HIV, Math. Biosci. Eng., 2 (2005), 363-380.doi: 10.3934/mbe.2005.2.363. |
[22] |
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.doi: 10.3934/mbe.2004.1.267. |
[23] |
G. M. Ortiz, D. F. Nixon, A. Trkola, J. Binley, X. Jin, S. Bonhoeffer and M. Markowitz, HIV-1-specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active antiretroviral therapy, J. Clin. Invest., 104 (1999), 13-18.doi: 10.1172/JCI7371. |
[24] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 (2005), 7950-7958. |
[25] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[26] |
D. D. Richman, D. Havlir, J. Corbeil, D. Looney, C. Ignacio, S. A. Spector, J. Sullivan, S. Cheeseman, K. Barringer and D. Pauletti, Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy, J. Virol., 68 (1994), 1660-1666. |
[27] |
H. Shim, S. J. Han, C. C. Chung, S. Nam and J. H. Seo, Optimal scheduling of drug treatment for HIV infection: Continuous dose control and receding horixon control, Int. J. Control Autom. Systems, 1 (2003), 282-288. |
[28] |
T. Shiri, W. Garira and S. D. Musekwa, A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters, Math. Biosci. Eng., 2 (2005), 811-832.doi: 10.3934/mbe.2005.2.811. |
[29] |
M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, Modeling plasma virus condentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.doi: 10.1006/jtbi.2000.1076. |
[30] |
H. R. Thieme and C. Castillo-Chavez, How may the infection-age-dependent infectivity affect the dynamics of HIV/AIDS, SIAM J. Appl. Math., 53 (1993), 1447-1479.doi: 10.1137/0153068. |
[31] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985. |