-
Previous Article
Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion
- DCDS-B Home
- This Issue
-
Next Article
On strong causal binomial approximation for stochastic processes
Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint
1. | Dep. Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. de los Castros, s/n, 39005 Santander, Spain, Spain |
References:
[1] |
L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4613-8165-5. |
[2] |
J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12.
doi: 10.1051/mmnp/20094302. |
[3] |
C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476.
doi: 10.1002/oca.957. |
[4] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.
doi: 10.1016/j.mbs.2009.08.004. |
[5] |
L. C. Evans, Partial Differential Equations,, AMS, (1998).
|
[6] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.
doi: 10.1137/S0036139902413489. |
[7] |
P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).
|
[8] |
W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117.
doi: 10.1016/j.amc.2010.05.008. |
[9] |
A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490. Google Scholar |
[10] |
U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307.
doi: 10.3934/mbe.2011.8.307. |
[11] |
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561.
doi: 10.3934/mbe.2005.2.561. |
[12] |
U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320.
doi: 10.1016/j.mbs.2005.03.013. |
[13] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994).
doi: 10.1142/9789812832542. |
[14] |
J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49.
doi: 10.1016/0025-5564(90)90047-3. |
[15] |
A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1.
doi: 10.1145/1731022.1731032. |
[16] |
G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317. Google Scholar |
[17] |
G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237.
doi: 10.1016/0025-5564(90)90021-P. |
[18] |
A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108.
doi: 10.1016/j.ejphar.2009.08.041. |
show all references
References:
[1] |
L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4613-8165-5. |
[2] |
J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12.
doi: 10.1051/mmnp/20094302. |
[3] |
C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476.
doi: 10.1002/oca.957. |
[4] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.
doi: 10.1016/j.mbs.2009.08.004. |
[5] |
L. C. Evans, Partial Differential Equations,, AMS, (1998).
|
[6] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.
doi: 10.1137/S0036139902413489. |
[7] |
P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).
|
[8] |
W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117.
doi: 10.1016/j.amc.2010.05.008. |
[9] |
A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490. Google Scholar |
[10] |
U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307.
doi: 10.3934/mbe.2011.8.307. |
[11] |
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561.
doi: 10.3934/mbe.2005.2.561. |
[12] |
U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320.
doi: 10.1016/j.mbs.2005.03.013. |
[13] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994).
doi: 10.1142/9789812832542. |
[14] |
J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49.
doi: 10.1016/0025-5564(90)90047-3. |
[15] |
A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1.
doi: 10.1145/1731022.1731032. |
[16] |
G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317. Google Scholar |
[17] |
G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237.
doi: 10.1016/0025-5564(90)90021-P. |
[18] |
A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108.
doi: 10.1016/j.ejphar.2009.08.041. |
[1] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[2] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[3] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[4] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[5] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[6] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[7] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[8] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[9] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[10] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[11] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[12] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[13] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[14] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[15] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[16] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[17] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[18] |
Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020343 |
[19] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[20] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]