August  2014, 19(6): 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint

1. 

Dep. Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. de los Castros, s/n, 39005 Santander, Spain, Spain

Received  August 2013 Revised  February 2014 Published  June 2014

We study three optimal control problems associated with Gompertz-type differential equations, including bound control and integral constraints. These problems can be interpreted in terms of planning anticancer therapies. Existence of optimal controls is proved and all their possible structures are determined in detail, by using the Pontryagin's Maximum Principle. The influence of the pharmacokinetics and pharmacodynamics variants, together with the integral constraint, is analyzed. Moreover, the numerical results of some illustrative examples and our conclusions are presented.
Citation: Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563
References:
[1]

L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[2]

J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12.  doi: 10.1051/mmnp/20094302.  Google Scholar

[3]

C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476.  doi: 10.1002/oca.957.  Google Scholar

[4]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations,, AMS, (1998).   Google Scholar

[6]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[7]

P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).   Google Scholar

[8]

W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117.  doi: 10.1016/j.amc.2010.05.008.  Google Scholar

[9]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.   Google Scholar

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307.  doi: 10.3934/mbe.2011.8.307.  Google Scholar

[11]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561.  doi: 10.3934/mbe.2005.2.561.  Google Scholar

[12]

U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320.  doi: 10.1016/j.mbs.2005.03.013.  Google Scholar

[13]

R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994).  doi: 10.1142/9789812832542.  Google Scholar

[14]

J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49.  doi: 10.1016/0025-5564(90)90047-3.  Google Scholar

[15]

A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1.  doi: 10.1145/1731022.1731032.  Google Scholar

[16]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.   Google Scholar

[17]

G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237.  doi: 10.1016/0025-5564(90)90021-P.  Google Scholar

[18]

A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108.  doi: 10.1016/j.ejphar.2009.08.041.  Google Scholar

show all references

References:
[1]

L. Cesari, Optimization-Theory and Applications,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[2]

J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments,, Math. Model. Nat. Phenom., 4 (2009), 12.  doi: 10.1051/mmnp/20094302.  Google Scholar

[3]

C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,, Optimal Control Appl. Methods, 32 (2011), 476.  doi: 10.1002/oca.957.  Google Scholar

[4]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations,, AMS, (1998).   Google Scholar

[6]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[7]

P. Hartman, Ordinary Differential Equations,, Birkhäuser, (1982).   Google Scholar

[8]

W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy,, Appl. Math. Comput., 217 (2010), 1117.  doi: 10.1016/j.amc.2010.05.008.  Google Scholar

[9]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.   Google Scholar

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307.  doi: 10.3934/mbe.2011.8.307.  Google Scholar

[11]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models,, Math. Biosci. Eng., 2 (2005), 561.  doi: 10.3934/mbe.2005.2.561.  Google Scholar

[12]

U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Math. Biosci., 206 (2007), 320.  doi: 10.1016/j.mbs.2005.03.013.  Google Scholar

[13]

R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994).  doi: 10.1142/9789812832542.  Google Scholar

[14]

J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit,, Math. Biosci., 100 (1990), 49.  doi: 10.1016/0025-5564(90)90047-3.  Google Scholar

[15]

A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method,, ACM Trans. Math. Software, 37 (2010), 1.  doi: 10.1145/1731022.1731032.  Google Scholar

[16]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.   Google Scholar

[17]

G. W. Swan, Role of optimal control theory in cancer chemotherapy,, Math. Biosci., 101 (1990), 237.  doi: 10.1016/0025-5564(90)90021-P.  Google Scholar

[18]

A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy,, Eur. J. Pharmacol., 625 (2009), 108.  doi: 10.1016/j.ejphar.2009.08.041.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[9]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[10]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[11]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[12]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[13]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[14]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[15]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[16]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[17]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[18]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]