Advanced Search
Article Contents
Article Contents

Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint

Abstract Related Papers Cited by
  • We study three optimal control problems associated with Gompertz-type differential equations, including bound control and integral constraints. These problems can be interpreted in terms of planning anticancer therapies. Existence of optimal controls is proved and all their possible structures are determined in detail, by using the Pontryagin's Maximum Principle. The influence of the pharmacokinetics and pharmacodynamics variants, together with the integral constraint, is analyzed. Moreover, the numerical results of some illustrative examples and our conclusions are presented.
    Mathematics Subject Classification: 93C15, 49K15, 49M05, 49M37, 92C50.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4613-8165-5.


    J. Clairambault, Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments, Math. Model. Nat. Phenom., 4 (2009), 12-67.doi: 10.1051/mmnp/20094302.


    C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems, Optimal Control Appl. Methods, 32 (2011), 476-502.doi: 10.1002/oca.957.


    A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26.doi: 10.1016/j.mbs.2009.08.004.


    L. C. Evans, Partial Differential Equations, AMS, Providence, 1998.


    K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971.doi: 10.1137/S0036139902413489.


    P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.


    W. Krabs and S. Pickl, An optimal control problem in cancer chemotherapy, Appl. Math. Comput., 217 (2010), 1117-1124.doi: 10.1016/j.amc.2010.05.008.


    A. K. Laird, Dynamics of tumour growth, Br. J. Cancer, 18 (1964), 490-502.


    U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323.doi: 10.3934/mbe.2011.8.307.


    U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models, Math. Biosci. Eng., 2 (2005), 561-578.doi: 10.3934/mbe.2005.2.561.


    U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Math. Biosci., 206 (2007), 320-342.doi: 10.1016/j.mbs.2005.03.013.


    R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific, Singapore, 1994.doi: 10.1142/9789812832542.


    J. M. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit, Math. Biosci., 100 (1990), 49-67.doi: 10.1016/0025-5564(90)90047-3.


    A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Trans. Math. Software, 37 (2010), 1-39.doi: 10.1145/1731022.1731032.


    G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma, Bull. Math. Biol., 39 (1977), 317-337.


    G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101 (1990), 237-284.doi: 10.1016/0025-5564(90)90021-P.


    A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, Eur. J. Pharmacol., 625 (2009), 108-121.doi: 10.1016/j.ejphar.2009.08.041.

  • 加载中

Article Metrics

HTML views() PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint