Citation: |
[1] |
M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, 82 (1989), 64-84.doi: 10.1016/0021-9991(89)90035-1. |
[2] |
M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, 53 (1984), 484-512.doi: 10.1016/0021-9991(84)90073-1. |
[3] |
E. O. Brigham, The Fast Fourier Transform and its Applications, Prentice Hall, 1988. |
[4] |
S. Chen and Y.-T. Zhang, Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods, Journal of Computational Physics, 230 (2011), 4336-4352.doi: 10.1016/j.jcp.2011.01.010. |
[5] |
S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455.doi: 10.1006/jcph.2002.6995. |
[6] |
Q. Du and W. Zhu, Stability analysis and applications of the exponential time differencing schemes, Journal of Computational Mathematics, 22 (2004), 200-209. |
[7] |
Q. Du and W. Zhu, Modified exponential time differencing schemes: Analysis and applications, BIT Numerical Mathematics, 45 (2005), 307-328.doi: 10.1007/s10543-005-7141-8. |
[8] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, 7 (2000), 713-1020. |
[9] |
B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, volume 67. Wiley New York, 1995. |
[10] |
M. Hochbruck and C. Lubich, On krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 34 (1997), 1911-1925.doi: 10.1137/S0036142995280572. |
[11] |
A. Jameson, W. Schmidt and E. Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, The 14th AIAA Fluid and Plasma Dynamics Conference, 1981.doi: 10.2514/6.1981-1259. |
[12] |
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228.doi: 10.1006/jcph.1996.0130. |
[13] |
L. Ju, J. Zhang, L. Zhu and Q. Du, Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations, Journal of Scientific Computing, 2014.doi: 10.1007/s10915-014-9862-9. |
[14] |
A.-K. Kassam and L. N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233.doi: 10.1137/S1064827502410633. |
[15] |
B. Kleefeld, A. Khaliq and B. Wade, An ETD Crank-Nicolson method for reaction-diffusion systems, Numerical Methods for Partial Differential Equations, 28 (2012), 1309-1335.doi: 10.1002/num.20682. |
[16] |
S. Krogstad, Generalized integrating factor methods for stiff PDEs, Journal of Computational Physics, 203 (2005), 72-88.doi: 10.1016/j.jcp.2004.08.006. |
[17] |
R. LeVeque, Numerical Methods for Conservation Laws, Birkhauser, 1992.doi: 10.1007/978-3-0348-8629-1. |
[18] |
X. Liu and Q. Nie, Compact integration factor methods for complex domains and adaptive mesh refinement, Journal of computational physics, 229 (2010), 5692-5706.doi: 10.1016/j.jcp.2010.04.003. |
[19] |
X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.doi: 10.1006/jcph.1994.1187. |
[20] |
Q. Nie, F. Wan, Y.-T. Zhang and X. Liu, Compact integration factor methods in high spatial dimensions, Journal of Computational Physics, 277 (2008), 5238-5255.doi: 10.1016/j.jcp.2008.01.050. |
[21] |
Q. Nie, Y.-T. Zhang and R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006), 521-537.doi: 10.1016/j.jcp.2005.09.030. |
[22] |
Y. Saad, Analysis of some krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29 (1992), 209-228.doi: 10.1137/0729014. |
[23] |
J. Shen and H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems, SIAM Journal on Scientific Computing, 32 (2010), 3228-3250.doi: 10.1137/100787842. |
[24] |
C. Van Loan, Computational Frameworks for the Fast Fourier Transform, volume 10. SIAM, 1992.doi: 10.1137/1.9781611970999. |
[25] |
A. Wiegmann, Fast Poisson, Fast Helmholtz and Fast Linear Elastostatic Solvers on Rectangular Parallelepipeds, Lawrence Berkeley National Laboratory, Paper LBNL-43565, 1999.doi: 10.2172/982430. |
[26] |
S. Zhao, J. Ovadia, X. Liu, Y. Zhang and Q. Nie, Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems, Journal of Computational Physics, 230 (2011), 5996-6009.doi: 10.1016/j.jcp.2011.04.009. |