• Previous Article
    Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system
August  2014, 19(6): 1689-1717. doi: 10.3934/dcdsb.2014.19.1689

Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations

1. 

Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon Cedex, France

Received  December 2013 Revised  March 2014 Published  June 2014

We present a numerical study of solutions to the generalized Kadomtsev-Petviashvili equations with critical and supercritical nonlinearity for localized initial data with a single minimum and single maximum. In the cases with blow-up, we use a dynamic rescaling to identify the type of the singularity. We present the first discussion of the observed blow-up scenarios. We show that the blow-up in solutions to the $L_{2}$ critical generalized Kadomtsev-Petviashvili I case is similar to what is known for the $L_{2}$ critical generalized Korteweg-de Vries equation. No blow-up is observed for solutions to the generalized Kadomtsev-Petviashvili II equations for $n\leq2$.
Citation: Christian Klein, Ralf Peter. Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1689-1717. doi: 10.3934/dcdsb.2014.19.1689
References:
[1]

M. Ablowitz and A. Fokas, On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation,, Phys. Lett. A, 94 (1983), 67. doi: 10.1016/0375-9601(83)90208-6. Google Scholar

[2]

M. Boiti, F. Pempinelli and A. K. Pogrebkov, Solutions of the KPI equation with smooth initial data,, Inverse Problems, 10 (1994), 505. doi: 10.1088/0266-5611/10/3/001. Google Scholar

[3]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Computations of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation,, Appl. Num. Maths., 10 (1992), 335. doi: 10.1016/0168-9274(92)90049-J. Google Scholar

[4]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation,, Phil. Trans. R. Soc. Lond. A, 351 (1995), 107. doi: 10.1098/rsta.1995.0027. Google Scholar

[5]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems,, J. Comp. Phys., 176 (2002), 430. doi: 10.1006/jcph.2002.6995. Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of the generalized KP equations,, Ann. Inst. Henri Poincaré, 14 (1997), 211. doi: 10.1016/S0294-1449(97)80145-X. Google Scholar

[7]

A. de Bouard and J.-C. Saut, Symmetry and decay of the generalized Kadomtsev-Petviashvili solitary waves,, SIAM J. Math. Anal., 28 (1997), 1064. doi: 10.1137/S0036141096297662. Google Scholar

[8]

D. B. Dix and W. R. McKinney, Numerical computations of self-similar blow-up solutions of the generalized Korteweg-de Vries equations,, Differ. Integral Equ., 11 (1998), 679. Google Scholar

[9]

G. Falkovitch and S. Turitsyn, Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnet,, Sov. Phys. JETP, 62 (1985), 146. Google Scholar

[10]

A. Fokas and L. Sung, The Cauchy problem for the KP I equation without the zero mass constraint,, Math. Proc. Camb. Phil. Soc., 125 (1999), 113. doi: 10.1017/S0305004198002850. Google Scholar

[11]

P. Gravejat, Asymptotics of the solitary waves for the generalised Kadomtsev-Petviashvili equations,, Discrete Contin. Dyn. Syst., 21 (2008), 835. doi: 10.3934/dcds.2008.21.835. Google Scholar

[12]

P. Guyenne, D. Lannes and J.-C. Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves,, Nonlinearity, 23 (2010), 237. doi: 10.1088/0951-7715/23/2/003. Google Scholar

[13]

M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for semilinear parabolic problems,, SIAM J. Numer. Anal., 43 (2005), 1069. Google Scholar

[14]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539. Google Scholar

[15]

A.-K. Kassam and L. N. Trefethen, Fourth order time-stepping for stiff pdes,, SIAM J. Sci. Comput., 26 (2005), 1214. doi: 10.1137/S1064827502410633. Google Scholar

[16]

C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Korteweg-de Vries equations,, Preprint available at: , (). Google Scholar

[17]

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewartson equations,, SIAM Journal on Scientific Computing, 33 (2011), 3333. doi: 10.1137/100816663. Google Scholar

[18]

C. Klein and J. Saut, Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations,, J. Nonl. Sci., 22 (2012), 763. doi: 10.1007/s00332-012-9127-4. Google Scholar

[19]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429. doi: 10.1007/s00332-007-9001-y. Google Scholar

[20]

C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations,, ETNA, 29 (): 116. Google Scholar

[21]

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewardson equations,, SIAM J. Sci. Comput., 33 (2011), 3333. doi: 10.1137/100816663. Google Scholar

[22]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1999), 112. doi: 10.1137/S1052623496303470. Google Scholar

[23]

Y. Liu, Blow-up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation,, Trans. Amer. Math. Soc., 353 (2001), 191. doi: 10.1090/S0002-9947-00-02465-X. Google Scholar

[24]

S. Manakov, V. Zakharov, L. Bordag and V. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205. doi: 10.1016/0375-9601(77)90875-1. Google Scholar

[25]

Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: Dynamics near the solition,, Preprint available at: , (). Google Scholar

[26]

L. Molinet, J. C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627. doi: 10.1137/060654256. Google Scholar

[27]

T. Schmelzer, The Fast Evaluation of Matrix Functions for Exponential Integrators,, PhD thesis, (2007). Google Scholar

show all references

References:
[1]

M. Ablowitz and A. Fokas, On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation,, Phys. Lett. A, 94 (1983), 67. doi: 10.1016/0375-9601(83)90208-6. Google Scholar

[2]

M. Boiti, F. Pempinelli and A. K. Pogrebkov, Solutions of the KPI equation with smooth initial data,, Inverse Problems, 10 (1994), 505. doi: 10.1088/0266-5611/10/3/001. Google Scholar

[3]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Computations of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation,, Appl. Num. Maths., 10 (1992), 335. doi: 10.1016/0168-9274(92)90049-J. Google Scholar

[4]

J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation,, Phil. Trans. R. Soc. Lond. A, 351 (1995), 107. doi: 10.1098/rsta.1995.0027. Google Scholar

[5]

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems,, J. Comp. Phys., 176 (2002), 430. doi: 10.1006/jcph.2002.6995. Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of the generalized KP equations,, Ann. Inst. Henri Poincaré, 14 (1997), 211. doi: 10.1016/S0294-1449(97)80145-X. Google Scholar

[7]

A. de Bouard and J.-C. Saut, Symmetry and decay of the generalized Kadomtsev-Petviashvili solitary waves,, SIAM J. Math. Anal., 28 (1997), 1064. doi: 10.1137/S0036141096297662. Google Scholar

[8]

D. B. Dix and W. R. McKinney, Numerical computations of self-similar blow-up solutions of the generalized Korteweg-de Vries equations,, Differ. Integral Equ., 11 (1998), 679. Google Scholar

[9]

G. Falkovitch and S. Turitsyn, Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnet,, Sov. Phys. JETP, 62 (1985), 146. Google Scholar

[10]

A. Fokas and L. Sung, The Cauchy problem for the KP I equation without the zero mass constraint,, Math. Proc. Camb. Phil. Soc., 125 (1999), 113. doi: 10.1017/S0305004198002850. Google Scholar

[11]

P. Gravejat, Asymptotics of the solitary waves for the generalised Kadomtsev-Petviashvili equations,, Discrete Contin. Dyn. Syst., 21 (2008), 835. doi: 10.3934/dcds.2008.21.835. Google Scholar

[12]

P. Guyenne, D. Lannes and J.-C. Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves,, Nonlinearity, 23 (2010), 237. doi: 10.1088/0951-7715/23/2/003. Google Scholar

[13]

M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for semilinear parabolic problems,, SIAM J. Numer. Anal., 43 (2005), 1069. Google Scholar

[14]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539. Google Scholar

[15]

A.-K. Kassam and L. N. Trefethen, Fourth order time-stepping for stiff pdes,, SIAM J. Sci. Comput., 26 (2005), 1214. doi: 10.1137/S1064827502410633. Google Scholar

[16]

C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Korteweg-de Vries equations,, Preprint available at: , (). Google Scholar

[17]

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewartson equations,, SIAM Journal on Scientific Computing, 33 (2011), 3333. doi: 10.1137/100816663. Google Scholar

[18]

C. Klein and J. Saut, Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations,, J. Nonl. Sci., 22 (2012), 763. doi: 10.1007/s00332-012-9127-4. Google Scholar

[19]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429. doi: 10.1007/s00332-007-9001-y. Google Scholar

[20]

C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations,, ETNA, 29 (): 116. Google Scholar

[21]

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-Stewardson equations,, SIAM J. Sci. Comput., 33 (2011), 3333. doi: 10.1137/100816663. Google Scholar

[22]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1999), 112. doi: 10.1137/S1052623496303470. Google Scholar

[23]

Y. Liu, Blow-up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation,, Trans. Amer. Math. Soc., 353 (2001), 191. doi: 10.1090/S0002-9947-00-02465-X. Google Scholar

[24]

S. Manakov, V. Zakharov, L. Bordag and V. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205. doi: 10.1016/0375-9601(77)90875-1. Google Scholar

[25]

Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: Dynamics near the solition,, Preprint available at: , (). Google Scholar

[26]

L. Molinet, J. C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627. doi: 10.1137/060654256. Google Scholar

[27]

T. Schmelzer, The Fast Evaluation of Matrix Functions for Exponential Integrators,, PhD thesis, (2007). Google Scholar

[1]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[2]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[3]

Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361

[4]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[5]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[6]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[7]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[8]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[9]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[10]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[11]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[12]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[13]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[14]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[15]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[16]

John A. D. Appleby, Denis D. Patterson. Blow-up and superexponential growth in superlinear Volterra equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3993-4017. doi: 10.3934/dcds.2018174

[17]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[18]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[19]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[20]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]