August  2014, 19(6): 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004

Received  September 2013 Revised  February 2014 Published  June 2014

In this paper, we apply the method of dynamical systems to a generalized two-component Hunter-Saxton system. Through qualitative analysis, we obtain bifurcations of phase portraits of the traveling system. Under different parameter conditions, exact explicit smooth solitary wave solutions, solitary cusp wave solutions, as well as periodic wave solutions are obtained. To guarantee the existence of these solutions, rigorous parametric conditions are given.
Citation: Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719
References:
[1]

P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists,, Springer, (1971).   Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solution,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.   Google Scholar

[4]

M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Cammassa-Holm equation and its solution,, Letters in Math. Phys., 75 (2006), 1.  doi: 10.1007/s11005-005-0041-7.  Google Scholar

[5]

M. Chen, Y. Liu and Z. Qiao, Sability of solitary wave and globl exisence of a generalized two-component Cammsa-Holm Equation,, Comnications of partial differential equation, 36 (2011), 2162.  doi: 10.1080/03605302.2011.556695.  Google Scholar

[6]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theoret. Math. Phys., 133 (2002), 1463.  doi: 10.1023/A:1021186408422.  Google Scholar

[7]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[8]

J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions,, Science Press, (2013).   Google Scholar

[9]

J. Li and G. Chen, On a class of singular nonlinear traveling wave equations,, Int. J. Bifurcation and Chaos, 17 (2007), 4049.  doi: 10.1142/S0218127407019858.  Google Scholar

[10]

J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach,, Science Press, (2007).   Google Scholar

[11]

J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4835395.  Google Scholar

[12]

J. Li and Z. Qiao, Bifurcations of traveling wave solutions for an integrable equation,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3385777.  Google Scholar

[13]

J. Li and Z. Qiao, Bifurcations and exact travelling wave solutions of the generalized two-component Cammsa-Holm Equation,, Int. J. Bifurcation and Chaos, 22 (2012).  doi: 10.1142/S0218127412503051.  Google Scholar

[14]

J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations,, Int. J. Bifurcation and Chaos, 16 (2006), 2235.  doi: 10.1142/S0218127406016033.  Google Scholar

[15]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system,, Nonlinear Analysis, 89 (2013), 242.  doi: 10.1016/j.na.2013.05.004.  Google Scholar

[16]

V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A: Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[17]

Z. Qiao and J. Li, Negative order KdV equation with both solitons and kink wave solutions,, Europhys. Lett., 94 (2011).   Google Scholar

[18]

Z. Qiao and G. Zhang, On peaked and smooth solitons for the Camassa-Holm equation,, Europhys. Lett., 73 (2006), 657.  doi: 10.1209/epl/i2005-10453-y.  Google Scholar

[19]

M. Wunsch, On the Hunter-Saxton system,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 647.  doi: 10.3934/dcdsb.2009.12.647.  Google Scholar

[20]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286.  doi: 10.1137/090768576.  Google Scholar

[21]

M. Wunsch, Weak geodesic flow on a semi-direct product and global solutions to the periodic Hunter-Saxton system,, Nonlinear Anal., 74 (2011), 4951.  doi: 10.1016/j.na.2011.04.041.  Google Scholar

show all references

References:
[1]

P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists,, Springer, (1971).   Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solution,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.   Google Scholar

[4]

M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Cammassa-Holm equation and its solution,, Letters in Math. Phys., 75 (2006), 1.  doi: 10.1007/s11005-005-0041-7.  Google Scholar

[5]

M. Chen, Y. Liu and Z. Qiao, Sability of solitary wave and globl exisence of a generalized two-component Cammsa-Holm Equation,, Comnications of partial differential equation, 36 (2011), 2162.  doi: 10.1080/03605302.2011.556695.  Google Scholar

[6]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theoret. Math. Phys., 133 (2002), 1463.  doi: 10.1023/A:1021186408422.  Google Scholar

[7]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[8]

J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions,, Science Press, (2013).   Google Scholar

[9]

J. Li and G. Chen, On a class of singular nonlinear traveling wave equations,, Int. J. Bifurcation and Chaos, 17 (2007), 4049.  doi: 10.1142/S0218127407019858.  Google Scholar

[10]

J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach,, Science Press, (2007).   Google Scholar

[11]

J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4835395.  Google Scholar

[12]

J. Li and Z. Qiao, Bifurcations of traveling wave solutions for an integrable equation,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3385777.  Google Scholar

[13]

J. Li and Z. Qiao, Bifurcations and exact travelling wave solutions of the generalized two-component Cammsa-Holm Equation,, Int. J. Bifurcation and Chaos, 22 (2012).  doi: 10.1142/S0218127412503051.  Google Scholar

[14]

J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations,, Int. J. Bifurcation and Chaos, 16 (2006), 2235.  doi: 10.1142/S0218127406016033.  Google Scholar

[15]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system,, Nonlinear Analysis, 89 (2013), 242.  doi: 10.1016/j.na.2013.05.004.  Google Scholar

[16]

V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A: Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[17]

Z. Qiao and J. Li, Negative order KdV equation with both solitons and kink wave solutions,, Europhys. Lett., 94 (2011).   Google Scholar

[18]

Z. Qiao and G. Zhang, On peaked and smooth solitons for the Camassa-Holm equation,, Europhys. Lett., 73 (2006), 657.  doi: 10.1209/epl/i2005-10453-y.  Google Scholar

[19]

M. Wunsch, On the Hunter-Saxton system,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 647.  doi: 10.3934/dcdsb.2009.12.647.  Google Scholar

[20]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286.  doi: 10.1137/090768576.  Google Scholar

[21]

M. Wunsch, Weak geodesic flow on a semi-direct product and global solutions to the periodic Hunter-Saxton system,, Nonlinear Anal., 74 (2011), 4951.  doi: 10.1016/j.na.2011.04.041.  Google Scholar

[1]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[2]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[3]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[7]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[11]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[12]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[15]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[19]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[20]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]