\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells

Abstract Related Papers Cited by
  • In this paper, a general viral model with virus-driven proliferation of target cells is studied. Global stability results are established by employing the Lyapunov method and a geometric approach developed by Li and Muldowney. It is shown that under certain conditions, the model exhibits a global threshold dynamics, while if these conditions are not met, then backward bifurcation and bistability are possible. An example is presented to provide some insights on how the virus-driven proliferation of target cells influences the virus dynamics and the drug therapy strategies.
    Mathematics Subject Classification: Primary: 92B05, 34D23; Secondary: 34D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Math. 35, Springer, Berlin, 1967.

    [2]

    G. Butler and P. Waltman, Persistence in dynamical Systems, J. Differential Equations, 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5.

    [3]

    W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1995.

    [4]

    R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: a comparison, J. Theor. Biol., 190 (1998), 201-214.

    [5]

    P. De Leenheer and H. L. Smith, Virus dynamics: a global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.doi: 10.1137/S0036139902406905.

    [6]

    N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokineticsand intracellular delay, J. Theor. Biol., 226 (2004), 95-109.doi: 10.1016/j.jtbi.2003.09.002.

    [7]

    H. I. Freedman, S. G. Ruan and M. X. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Differen. Equat., 6 (1994), 583-600.doi: 10.1007/BF02218848.

    [8]

    J. K. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-4342-7.

    [9]

    J. M. Heffernan and L. M. Wahl, Monte Carlo estimates of natural variation in HIV infection, J. Theor. Biol., 236 (2005), 137-153.doi: 10.1016/j.jtbi.2005.03.002.

    [10]

    T. B. Kepler and A. S. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci. USA, 95 (1998), 11514-11519.doi: 10.1073/pnas.95.20.11514.

    [11]

    D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices of the AMS, 43 (1996), 191-202.

    [12]

    A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.doi: 10.1016/j.bulm.2004.02.001.

    [13]

    J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.

    [14]

    M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.doi: 10.1016/S0025-5564(99)00030-9.

    [15]

    M. Y. Li and J. S. Muldowney, A geometric approach to the global-stability problems, SIAM J. Math. Anal., 27 (1996), 1070-1083.doi: 10.1137/S0036141094266449.

    [16]

    Y. Li and J. S. Muldowney, On Bendixson's criterion, J. Differential Equations, 106 (1993), 27-39.doi: 10.1006/jdeq.1993.1097.

    [17]

    M. Y. Li and H. Shu, Impact of intercellar delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.doi: 10.1137/090779322.

    [18]

    M. Y. Li and H. Shu, Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis, J. Math. Biol., 64 (2012), 1005-1020.doi: 10.1007/s00285-011-0436-2.

    [19]

    R. H. Martin Jr., Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432-454.doi: 10.1016/0022-247X(74)90084-5.

    [20]

    J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain J. Math., 20 (1990), 857-872.doi: 10.1216/rmjm/1181073047.

    [21]

    A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.doi: 10.1007/s00285-005-0321-y.

    [22]

    P. W. Nelson, J. E. Mittler and A. S. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters, Journal of Aids, 26 (2001), 405-412.

    [23]

    M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.doi: 10.1126/science.272.5258.74.

    [24]

    M. A. Nowak and R. M. May, Virus Dynamics, Cambridge University Press, Cambridge, 2000.

    [25]

    A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.doi: 10.1137/S0036144598335107.

    [26]

    A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, {\bf271} (1996), 1582-1586.doi: 10.1126/science.271.5255.1582.

    [27]

    R. Qesmi, J. Wu, J. Wu and J. M. Heffernan, Influence of backward bifurcation in a model of hepatitis B and C viruses, Math. Biosci., 224 (2010), 118-125.doi: 10.1016/j.mbs.2010.01.002.

    [28]

    T. Revilla and G. García-Ramos, Fighting a virus with a virus: A dynamical model for HIV-1 therapy, Math. Biosci., 185 (2003), 191-203.doi: 10.1016/S0025-5564(03)00091-9.

    [29]

    H. Shu and L. Wang, Role of CD$4^+$ T-cell proliferation in HIV infection under antiretroviral therapy, J. Math. Anal. Appl., 394 (2012), 529-544.doi: 10.1016/j.jmaa.2012.05.027.

    [30]

    H. L. Smith, Monotone Dynamical Systems, AMS, Providence, RI, 1995.

    [31]

    P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

    [32]

    P. Waltman, A brief survey of persistence in dynamical systems, in Delay Differential Equations and Dynamical Systems (eds. S. Busenberg, M. Martelli), Springer, New York, 1475 (1991), 31-40.doi: 10.1007/BFb0083477.

    [33]

    L. Wang and S. Ellermeyer, HIV infection and CD$4^+$ T cell dynamics, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1417-1430.doi: 10.3934/dcdsb.2006.6.1417.

    [34]

    L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4$^+$ T cells, Math. Biosci., 200 (2006), 44-57.doi: 10.1016/j.mbs.2005.12.026.

    [35]

    Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.doi: 10.3934/dcdsb.2012.17.401.

    [36]

    H. Zhu and X. Zou, Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511-524.doi: 10.3934/dcdsb.2009.12.511.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return