August  2014, 19(6): 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an,710049, China

2. 

Department of Mathematics, Nanjing University, Nanjing, 210093

3. 

School of Mathematics and Computer Sciences, Yan'an University, Yan'an, 716000, China

Received  May 2013 Revised  March 2014 Published  June 2014

In this paper, we are concerned with the long-time behavior of the following non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian \begin{align*} \frac{\partial u}{\partial t}-(\lambda+i\alpha)\Delta_p u+(\kappa+i\beta)|u|^{q-2}u-\gamma u=g(x,t) \end{align*} without any restriction on $q>2$ under additional assumptions. We first prove the existence of a pullback absorbing set in $L^2(\Omega) \cap W^{1,p}_0(\Omega)\cap L^q(\Omega)$ for the process $\{U(t,\tau)\}_{t\geq \tau}$ corresponding to the non-autonomous quasi-linear complex Ginzburg-Landau equation (1)-(3) with $p$-Laplacian. Next, the existence of a pullback attractor in $L^2(\Omega)$ is established by the Sobolev compactness embedding theorem. Finally, we prove the existence of a pullback attractor in $W^{1,p}_0(\Omega)$ for the process $\{U(t,\tau)\}_{t\geq \tau}$ associated with the non-autonomous quasi-linear complex Ginzburg-Landau equation (1)-(3) with $p$-Laplacian by asymptotic a priori estimates.
Citation: Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801
References:
[1]

A. R. Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents and singular initial data,, Journal of Differential Equations, 181 (2002), 165.  doi: 10.1006/jdeq.2001.4072.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[3]

C. Bu, On the Cauchy problem for the $1+2$ complex Ginzburg-Landau equation,, Journal of the Australian Mathematical Society Series B-Applied Mathemati, 36 (1995), 313.  doi: 10.1017/S0334270000010468.  Google Scholar

[4]

G. X. Chen and C. K. Zhong, Uniform attractors for non-autonomous $p$-Laplacian equations,, Nonlinear Analysis, 68 (2008), 3349.  doi: 10.1016/j.na.2007.03.025.  Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probability Theory and Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[6]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, Journal of Dynamics and Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[7]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,, Reviews of Modern Physics, 65 (1993), 851.  doi: 10.1103/RevModPhys.65.851.  Google Scholar

[8]

P. Clément, N. Okazawa, M. Sobajima and T. Yokota, A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods,, Journal of Differential Equations, 253 (2012), 1250.  doi: 10.1016/j.jde.2012.05.002.  Google Scholar

[9]

T. Caraballo, G. Lukasiewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[10]

T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of non-autonomous partial differential equations,, ANZIAM Journal, 45 (2003), 207.  doi: 10.1017/S1446181100013274.  Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[12]

C. R. Doering, J. D. Gibbon, D. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation,, Nonlinearity, 1 (1988), 279.  doi: 10.1088/0951-7715/1/2/001.  Google Scholar

[13]

C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of complex Ginzburg-Landau equation,, Physica D, 71 (1994), 285.  doi: 10.1016/0167-2789(94)90150-3.  Google Scholar

[14]

D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems,, Nonlinear Dynamics and Systems Theory, 2 (2002), 125.   Google Scholar

[15]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods,, Physica D, 95 (1996), 191.  doi: 10.1016/0167-2789(96)00055-3.  Google Scholar

[16]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Compactness methods,, Communications in Mathematical Physics, 187 (1997), 45.  doi: 10.1007/s002200050129.  Google Scholar

[17]

J. M. Ghidaglia and B. Héron, Dimension of the attractor associated to the Ginzburg-Landau equation,, Physica D, 28 (1987), 282.  doi: 10.1016/0167-2789(87)90020-0.  Google Scholar

[18]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations,, Nonlinear Analysis, 63 (2005), 1749.  doi: 10.1016/j.na.2005.03.022.  Google Scholar

[19]

P. E. Kloeden and B. Schmalfuß, Non-autonomous systems, cocycle attractors and variable time-step discretization,, Numerical Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[20]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics of Continuous, 4 (1998), 211.   Google Scholar

[21]

G. Łukaszewicz, On pullback attractors in $H_0^1$ for nonautonomous reaction-diffusion equations,, International Journal of Bifurcation and Chaos, 20 (2010), 2637.  doi: 10.1142/S0218127410027258.  Google Scholar

[22]

G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations,, Nonlinear Analysis, 73 (2010), 350.  doi: 10.1016/j.na.2010.03.023.  Google Scholar

[23]

S. Lú, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation,, Numerische Mathematik, 22 (2000), 1.   Google Scholar

[24]

S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external force,, Discrete and Continuous Dynamical Systems-A, 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[25]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Applied Mathematics and Computation, 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[26]

Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p,$, Applied Mathematics and Computation, 207 (2009), 373.  doi: 10.1016/j.amc.2008.10.065.  Google Scholar

[27]

H. T. Moon, P. Huerre and L. G. Redekopp, Transitions to chaos in the Ginzburg-Landau equation,, Physica D, 7 (1983), 135.  doi: 10.1016/0167-2789(83)90124-0.  Google Scholar

[28]

A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection,, Journal of Fluid Mechanics, 38 (1969), 279.  doi: 10.1017/S0022112069000176.  Google Scholar

[29]

N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with $p$-Laplacian,, Journal of Differential Equations, 182 (2002), 541.  doi: 10.1006/jdeq.2001.4097.  Google Scholar

[30]

N. Okazawa and T. Yokota, Monotonicity method for the complex Ginzburg-Landau equation, including smoothing effect,, Nonlinear Analysis, 47 (2001), 79.  doi: 10.1016/S0362-546X(01)00158-4.  Google Scholar

[31]

N. Okazawa and T. Yokota, Monotonicity method applied to the complex Ginzburg-Landau and related equations,, Journal of Differential Equations, 267 (2002), 247.  doi: 10.1006/jmaa.2001.7770.  Google Scholar

[32]

T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain,, Communications in Mathematical Physics, 245 (2004), 105.  doi: 10.1007/s00220-003-1004-4.  Google Scholar

[33]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation,, Physica D, 41 (1990), 232.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[34]

B. Schmalfuß, Attractors for non-autonomous dynamical systems,, in Proc. Equadiff 99 (eds. B. Fiedler, 1 (2000), 684.   Google Scholar

[35]

H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H_0^1,$, Journal of Differential Equations, 249 (2010), 2357.  doi: 10.1016/j.jde.2010.07.034.  Google Scholar

[36]

H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations,, Journal of Mathematical Analysis and Applications, 325 (2007), 1200.  doi: 10.1016/j.jmaa.2006.02.041.  Google Scholar

[37]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, New York, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

A. Unai, Global $C^1$ solutions of time-dependent complex Ginzburg-Landau equations,, Nonlinear Analysis, 46 (2001), 329.  doi: 10.1016/S0362-546X(99)00435-6.  Google Scholar

[39]

Y. H. Wang and C. K. Zhong, Pullback $\mathcalD$-attractors for nonautonomous sine-Gordon equations,, Nonlinear Analysis, 67 (2007), 2137.  doi: 10.1016/j.na.2006.09.019.  Google Scholar

[40]

B. You and C. K. Zhong, Global attractors for $p$-Laplacian equations with dynamic flux boundary conditions,, Advanced Nonlinear Studies, 13 (2013), 391.   Google Scholar

[41]

B. You, Y. R. Hou and F. Li, Global attractors of the quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian,, submitted., ().   Google Scholar

[42]

M. H. Yang, C. Y. Sun and C. K. Zhong, Global attractors for $p$-Laplacian equation,, Journal of Mathematical Analysis and Applications, 327 (2007), 1130.  doi: 10.1016/j.jmaa.2006.04.085.  Google Scholar

[43]

L. Yang, M. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition,, Discrete Continuous Dynam. Systems-B, 17 (2012), 2635.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[44]

T. Yokota, Monotonicity method applied to complex Ginzburg-Landau type equations,, Journal of Mathematical Analysis and Applications, 380 (2011), 455.  doi: 10.1016/j.jmaa.2011.04.001.  Google Scholar

[45]

C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, Journal of Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

A. R. Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents and singular initial data,, Journal of Differential Equations, 181 (2002), 165.  doi: 10.1006/jdeq.2001.4072.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[3]

C. Bu, On the Cauchy problem for the $1+2$ complex Ginzburg-Landau equation,, Journal of the Australian Mathematical Society Series B-Applied Mathemati, 36 (1995), 313.  doi: 10.1017/S0334270000010468.  Google Scholar

[4]

G. X. Chen and C. K. Zhong, Uniform attractors for non-autonomous $p$-Laplacian equations,, Nonlinear Analysis, 68 (2008), 3349.  doi: 10.1016/j.na.2007.03.025.  Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probability Theory and Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[6]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, Journal of Dynamics and Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[7]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,, Reviews of Modern Physics, 65 (1993), 851.  doi: 10.1103/RevModPhys.65.851.  Google Scholar

[8]

P. Clément, N. Okazawa, M. Sobajima and T. Yokota, A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods,, Journal of Differential Equations, 253 (2012), 1250.  doi: 10.1016/j.jde.2012.05.002.  Google Scholar

[9]

T. Caraballo, G. Lukasiewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[10]

T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of non-autonomous partial differential equations,, ANZIAM Journal, 45 (2003), 207.  doi: 10.1017/S1446181100013274.  Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[12]

C. R. Doering, J. D. Gibbon, D. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation,, Nonlinearity, 1 (1988), 279.  doi: 10.1088/0951-7715/1/2/001.  Google Scholar

[13]

C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of complex Ginzburg-Landau equation,, Physica D, 71 (1994), 285.  doi: 10.1016/0167-2789(94)90150-3.  Google Scholar

[14]

D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems,, Nonlinear Dynamics and Systems Theory, 2 (2002), 125.   Google Scholar

[15]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods,, Physica D, 95 (1996), 191.  doi: 10.1016/0167-2789(96)00055-3.  Google Scholar

[16]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Compactness methods,, Communications in Mathematical Physics, 187 (1997), 45.  doi: 10.1007/s002200050129.  Google Scholar

[17]

J. M. Ghidaglia and B. Héron, Dimension of the attractor associated to the Ginzburg-Landau equation,, Physica D, 28 (1987), 282.  doi: 10.1016/0167-2789(87)90020-0.  Google Scholar

[18]

N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations,, Nonlinear Analysis, 63 (2005), 1749.  doi: 10.1016/j.na.2005.03.022.  Google Scholar

[19]

P. E. Kloeden and B. Schmalfuß, Non-autonomous systems, cocycle attractors and variable time-step discretization,, Numerical Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[20]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics of Continuous, 4 (1998), 211.   Google Scholar

[21]

G. Łukaszewicz, On pullback attractors in $H_0^1$ for nonautonomous reaction-diffusion equations,, International Journal of Bifurcation and Chaos, 20 (2010), 2637.  doi: 10.1142/S0218127410027258.  Google Scholar

[22]

G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations,, Nonlinear Analysis, 73 (2010), 350.  doi: 10.1016/j.na.2010.03.023.  Google Scholar

[23]

S. Lú, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation,, Numerische Mathematik, 22 (2000), 1.   Google Scholar

[24]

S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external force,, Discrete and Continuous Dynamical Systems-A, 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[25]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Applied Mathematics and Computation, 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[26]

Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p,$, Applied Mathematics and Computation, 207 (2009), 373.  doi: 10.1016/j.amc.2008.10.065.  Google Scholar

[27]

H. T. Moon, P. Huerre and L. G. Redekopp, Transitions to chaos in the Ginzburg-Landau equation,, Physica D, 7 (1983), 135.  doi: 10.1016/0167-2789(83)90124-0.  Google Scholar

[28]

A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection,, Journal of Fluid Mechanics, 38 (1969), 279.  doi: 10.1017/S0022112069000176.  Google Scholar

[29]

N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with $p$-Laplacian,, Journal of Differential Equations, 182 (2002), 541.  doi: 10.1006/jdeq.2001.4097.  Google Scholar

[30]

N. Okazawa and T. Yokota, Monotonicity method for the complex Ginzburg-Landau equation, including smoothing effect,, Nonlinear Analysis, 47 (2001), 79.  doi: 10.1016/S0362-546X(01)00158-4.  Google Scholar

[31]

N. Okazawa and T. Yokota, Monotonicity method applied to the complex Ginzburg-Landau and related equations,, Journal of Differential Equations, 267 (2002), 247.  doi: 10.1006/jmaa.2001.7770.  Google Scholar

[32]

T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain,, Communications in Mathematical Physics, 245 (2004), 105.  doi: 10.1007/s00220-003-1004-4.  Google Scholar

[33]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation,, Physica D, 41 (1990), 232.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[34]

B. Schmalfuß, Attractors for non-autonomous dynamical systems,, in Proc. Equadiff 99 (eds. B. Fiedler, 1 (2000), 684.   Google Scholar

[35]

H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H_0^1,$, Journal of Differential Equations, 249 (2010), 2357.  doi: 10.1016/j.jde.2010.07.034.  Google Scholar

[36]

H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations,, Journal of Mathematical Analysis and Applications, 325 (2007), 1200.  doi: 10.1016/j.jmaa.2006.02.041.  Google Scholar

[37]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, New York, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

A. Unai, Global $C^1$ solutions of time-dependent complex Ginzburg-Landau equations,, Nonlinear Analysis, 46 (2001), 329.  doi: 10.1016/S0362-546X(99)00435-6.  Google Scholar

[39]

Y. H. Wang and C. K. Zhong, Pullback $\mathcalD$-attractors for nonautonomous sine-Gordon equations,, Nonlinear Analysis, 67 (2007), 2137.  doi: 10.1016/j.na.2006.09.019.  Google Scholar

[40]

B. You and C. K. Zhong, Global attractors for $p$-Laplacian equations with dynamic flux boundary conditions,, Advanced Nonlinear Studies, 13 (2013), 391.   Google Scholar

[41]

B. You, Y. R. Hou and F. Li, Global attractors of the quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian,, submitted., ().   Google Scholar

[42]

M. H. Yang, C. Y. Sun and C. K. Zhong, Global attractors for $p$-Laplacian equation,, Journal of Mathematical Analysis and Applications, 327 (2007), 1130.  doi: 10.1016/j.jmaa.2006.04.085.  Google Scholar

[43]

L. Yang, M. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition,, Discrete Continuous Dynam. Systems-B, 17 (2012), 2635.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[44]

T. Yokota, Monotonicity method applied to complex Ginzburg-Landau type equations,, Journal of Mathematical Analysis and Applications, 380 (2011), 455.  doi: 10.1016/j.jmaa.2011.04.001.  Google Scholar

[45]

C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, Journal of Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

[2]

Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109

[3]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[4]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[5]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[6]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[7]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[8]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[9]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[10]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

[11]

Feng Zhou, Chunyou Sun. Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3767-3792. doi: 10.3934/dcdsb.2016120

[12]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[13]

Dingshi Li, Lin Shi, Xiaohu Wang. Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5121-5148. doi: 10.3934/dcdsb.2019046

[14]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[15]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[16]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[17]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[18]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[19]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[20]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]