September  2014, 19(7): 1837-1853. doi: 10.3934/dcdsb.2014.19.1837

Effect of intracellular diffusion on current--voltage curves in potassium channels

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via A. Scarpa 16, I-00161, Roma, Italy, Italy, Italy, Italy

Received  April 2013 Revised  July 2013 Published  August 2014

We study the effect of intracellular ion diffusion on ionic currents permeating through the cell membrane. Ion flux across the cell membrane is mediated by specific channels, which have been widely studied in recent years with remarkable results: very precise measurements of the true current across a single channel are now available. Nevertheless, a complete understanding of this phenomenon is still lacking, though molecular dynamics and kinetic models have provided partial insights. In this paper we demonstrate, by analyzing the KcsA current-voltage currents via a suitable lattice model, that intracellular diffusion plays a crucial role in the permeation phenomenon. We believe that the interplay between the channel behavior and the ion diffusion in the cell is a key ingredient for a full explanation of the current-voltage curves.
Citation: Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837
References:
[1]

A. Abenavoli, M. L. Di Francesco, I. Schroeder, S. Epimoshko, S. Gazzarini, U. P. Hansen G. Thiel and A. Moroni, Fast and slow gating are inherent properties of the pore module of the K$^+$ channel Kcv,, J. Gen. Physiol., 134 (2009), 219.  doi: 10.1085/jgp.200910266.  Google Scholar

[2]

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Monte Carlo study of gating and selection in potassium channels,, Physical Review E, 84 (2011).  doi: 10.1103/PhysRevE.84.021920.  Google Scholar

[3]

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Flux through a time-periodic gate: Monte Carlo test of a Homogenization result,, Simultech 2013, (2013), 626.   Google Scholar

[4]

D. Andreucci and D. Bellaveglia, Permeability of interfaces with alternating pores in parabolic problems,, Asymptotic Analysis, 79 (2012), 189.   Google Scholar

[5]

J. rAqvist and V. Luzhkov, Ion permeation mechanism of the potassium channel,, Nature, 404 (2000), 881.   Google Scholar

[6]

S. Bernèche and B. Roux, A microscopic view of ion conduction through the K$^+$ channel,, PNAS, 100 (2003), 8644.   Google Scholar

[7]

S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules,, J. Chem. Phys., 115 (2001), 3732.  doi: 10.1063/1.1387447.  Google Scholar

[8]

E. N. M. Cirillo and A. Muntean, Dynamics of pedestrians in regions with no visibility - a lattice model without exclusion,, Physica A, 392 (2013), 3578.  doi: 10.1016/j.physa.2013.04.029.  Google Scholar

[9]

E. N. M. Cirillo and A. Muntean, Can cooperation slow down emergency evacuations?,, Comptes Rendus Mecanique, 340 (2012), 626.  doi: 10.1016/j.crme.2012.09.003.  Google Scholar

[10]

M. Ciszkowska, L. Zeng, E. O. Stejskal and J. G. Osteryoung, Transport of Thallium(I) Counterion in Polyelectrolyte Solution Determined by Voltammetry with Microelectrodes and by Pulsed-Field-Gradient, Spin-Echo NMR,, J. Phys. Chem., 99 (1995), 11764.  doi: 10.1021/j100030a022.  Google Scholar

[11]

E. L. Cussler, Diffusion,, Second Edition, (1997).  doi: 10.1017/CBO9780511805134.  Google Scholar

[12]

D. A. Doyle, C. J. Morais, R. A. Pfuetzner, A. kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, The structure of the potassium channel: Molecular basis of K$^+$ conduction and selectivity,, Science, 280 (1998), 69.  doi: 10.1126/science.280.5360.69.  Google Scholar

[13]

J.-F. Dufréche, O. Bernard, S. Durand-Vidal and P. Turq, Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA,, J. Phys. Chem. B, 109 (2005), 9873.   Google Scholar

[14]

D. Fedida and J. C. Hesketh, Gating of voltage-dependent potassium channels,, Prog. Bio. Mol. Biology, 75 (2001), 165.  doi: 10.1016/S0079-6107(01)00006-2.  Google Scholar

[15]

S. A. N. Goldstein, D. Bockenhauer, I. O'Kelly and N. Zilberberg, Potassium leak channels and the Kcnk family of two-p-domain subunits,, Nature Reviews Neuroscience, 2 (2001), 175.   Google Scholar

[16]

G. Grimmet and D. Stirzaker, Probability and Random Processes,, Oxford University Press Inc., (2001).   Google Scholar

[17]

H. S. Harned and J. A. Shropshire, The Diffusion Coefficietn at $25^o$ of Potassium Chloride at Low Concentrations in $0.25$ Molar Aqueous Sucrose Solutions,, J. of the American Chemical Society, 80 (1958), 5652.   Google Scholar

[18]

L. Heginbotham and R. MacKinnon, Conduction Properties of the Cloned Shaker K$^+$ Channel,, Biophysical Journal, 65 (1993), 2089.  doi: 10.1016/S0006-3495(93)81244-X.  Google Scholar

[19]

B. Hille, Ion Channels of Excitable Membranes,, Third Edition, (2001).   Google Scholar

[20]

A. L. Hodgkin and A. F. Huxley, The components of membrane conductance in the giant axon of Loligo,, J. Physiol., 116 (1952), 473.   Google Scholar

[21]

A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre,, J. Physiol., 128 (1955), 61.   Google Scholar

[22]

A. L. Hodgkin and R. D. Keynes, The mobility and diffusion coefficient of potassium in giant axons from SEPIA,, J. Physiol., 119 (1953), 513.   Google Scholar

[23]

S. Imai, M. Osawa, K. Takeichi and I. Shimada, Structural basis underlying the dual gate properties of KcsA,, PNAS, 107 (2010), 6216.  doi: 10.1073/pnas.0911270107.  Google Scholar

[24]

M. LeMasurier, L. Heginbotham and C. Miller, Kcsa: It's a Potassium Channel,, J. Gen. Physiol., 118 (2001), 303.  doi: 10.1085/jgp.118.3.303.  Google Scholar

[25]

S. Mafé and J. Pellicer, Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model,, Phy. Rev. E, 71 (2005).   Google Scholar

[26]

C. Miller, An overview of the potassium channel family,, Genome Biology, 1 (2000).   Google Scholar

[27]

C. Miller, Ionic hopping defended,, J. Gen. Physiol., 113 (1999), 783.  doi: 10.1085/jgp.113.6.783.  Google Scholar

[28]

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres,, Nature, 260 (1976), 799.  doi: 10.1038/260799a0.  Google Scholar

[29]

P. H. Nelson, A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis-Menten behavior,, J. Chem. Phys., 117 (2002), 11396.  doi: 10.1063/1.1522709.  Google Scholar

[30]

P. H. Nelson, Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.061908.  Google Scholar

[31]

P. H. Nelson, A permeation theory for single-file ion channels: One- and two-step models,, J. Chem. Phys., 134 (2011).  doi: 10.1063/1.3580562.  Google Scholar

[32]

M. Recanatini, A. Cavalli and M. Masetti, Modeling hERG and its interactions with drugs: Recent advances in light of current potassium channel simulations,, Chem. Med. Chem., 3 (2008), 523.  doi: 10.1002/cmdc.200700264.  Google Scholar

[33]

M. L. Renart, E. Montoya, A. M. Fernández, M. L. Molina, J. A. Poveda, J. A. Encinar, J. L. Ayala, A. V. Ferrer-Montiel, J. Gómez, A. Morales and J. M. González Ros, Controbution of Ion inding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel,, Biochemistry, 51 (2012), 3891.   Google Scholar

[34]

I. Schroeder, U. P. Hansen, Saturation and Microsecond Gating of Current Indicate Depletion-induced Instability of the MaxiK Selectivity Filter,, J. Gen. Physiol., 130 (2007), 83.  doi: 10.1085/jgp.200709802.  Google Scholar

[35]

A. M. J. VanDongen, Structure and Function of Ion Channels: A Hole in Four?,, Comm. Theor. Biol., 2 (1992), 429.   Google Scholar

[36]

A. M. J. VanDongen, K channel gating by an affinity-switching selectivity filter,, PNAS, 101 (2004), 3248.  doi: 10.1073/pnas.0308743101.  Google Scholar

[37]

Y. Zhou and R. Mackinnon, The occupancy of ions in the K$^+$ Selectivity Filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates,, J. Mol. Biol., 333 (2003), 965.  doi: 10.1016/j.jmb.2003.09.022.  Google Scholar

show all references

References:
[1]

A. Abenavoli, M. L. Di Francesco, I. Schroeder, S. Epimoshko, S. Gazzarini, U. P. Hansen G. Thiel and A. Moroni, Fast and slow gating are inherent properties of the pore module of the K$^+$ channel Kcv,, J. Gen. Physiol., 134 (2009), 219.  doi: 10.1085/jgp.200910266.  Google Scholar

[2]

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Monte Carlo study of gating and selection in potassium channels,, Physical Review E, 84 (2011).  doi: 10.1103/PhysRevE.84.021920.  Google Scholar

[3]

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Flux through a time-periodic gate: Monte Carlo test of a Homogenization result,, Simultech 2013, (2013), 626.   Google Scholar

[4]

D. Andreucci and D. Bellaveglia, Permeability of interfaces with alternating pores in parabolic problems,, Asymptotic Analysis, 79 (2012), 189.   Google Scholar

[5]

J. rAqvist and V. Luzhkov, Ion permeation mechanism of the potassium channel,, Nature, 404 (2000), 881.   Google Scholar

[6]

S. Bernèche and B. Roux, A microscopic view of ion conduction through the K$^+$ channel,, PNAS, 100 (2003), 8644.   Google Scholar

[7]

S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules,, J. Chem. Phys., 115 (2001), 3732.  doi: 10.1063/1.1387447.  Google Scholar

[8]

E. N. M. Cirillo and A. Muntean, Dynamics of pedestrians in regions with no visibility - a lattice model without exclusion,, Physica A, 392 (2013), 3578.  doi: 10.1016/j.physa.2013.04.029.  Google Scholar

[9]

E. N. M. Cirillo and A. Muntean, Can cooperation slow down emergency evacuations?,, Comptes Rendus Mecanique, 340 (2012), 626.  doi: 10.1016/j.crme.2012.09.003.  Google Scholar

[10]

M. Ciszkowska, L. Zeng, E. O. Stejskal and J. G. Osteryoung, Transport of Thallium(I) Counterion in Polyelectrolyte Solution Determined by Voltammetry with Microelectrodes and by Pulsed-Field-Gradient, Spin-Echo NMR,, J. Phys. Chem., 99 (1995), 11764.  doi: 10.1021/j100030a022.  Google Scholar

[11]

E. L. Cussler, Diffusion,, Second Edition, (1997).  doi: 10.1017/CBO9780511805134.  Google Scholar

[12]

D. A. Doyle, C. J. Morais, R. A. Pfuetzner, A. kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, The structure of the potassium channel: Molecular basis of K$^+$ conduction and selectivity,, Science, 280 (1998), 69.  doi: 10.1126/science.280.5360.69.  Google Scholar

[13]

J.-F. Dufréche, O. Bernard, S. Durand-Vidal and P. Turq, Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA,, J. Phys. Chem. B, 109 (2005), 9873.   Google Scholar

[14]

D. Fedida and J. C. Hesketh, Gating of voltage-dependent potassium channels,, Prog. Bio. Mol. Biology, 75 (2001), 165.  doi: 10.1016/S0079-6107(01)00006-2.  Google Scholar

[15]

S. A. N. Goldstein, D. Bockenhauer, I. O'Kelly and N. Zilberberg, Potassium leak channels and the Kcnk family of two-p-domain subunits,, Nature Reviews Neuroscience, 2 (2001), 175.   Google Scholar

[16]

G. Grimmet and D. Stirzaker, Probability and Random Processes,, Oxford University Press Inc., (2001).   Google Scholar

[17]

H. S. Harned and J. A. Shropshire, The Diffusion Coefficietn at $25^o$ of Potassium Chloride at Low Concentrations in $0.25$ Molar Aqueous Sucrose Solutions,, J. of the American Chemical Society, 80 (1958), 5652.   Google Scholar

[18]

L. Heginbotham and R. MacKinnon, Conduction Properties of the Cloned Shaker K$^+$ Channel,, Biophysical Journal, 65 (1993), 2089.  doi: 10.1016/S0006-3495(93)81244-X.  Google Scholar

[19]

B. Hille, Ion Channels of Excitable Membranes,, Third Edition, (2001).   Google Scholar

[20]

A. L. Hodgkin and A. F. Huxley, The components of membrane conductance in the giant axon of Loligo,, J. Physiol., 116 (1952), 473.   Google Scholar

[21]

A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre,, J. Physiol., 128 (1955), 61.   Google Scholar

[22]

A. L. Hodgkin and R. D. Keynes, The mobility and diffusion coefficient of potassium in giant axons from SEPIA,, J. Physiol., 119 (1953), 513.   Google Scholar

[23]

S. Imai, M. Osawa, K. Takeichi and I. Shimada, Structural basis underlying the dual gate properties of KcsA,, PNAS, 107 (2010), 6216.  doi: 10.1073/pnas.0911270107.  Google Scholar

[24]

M. LeMasurier, L. Heginbotham and C. Miller, Kcsa: It's a Potassium Channel,, J. Gen. Physiol., 118 (2001), 303.  doi: 10.1085/jgp.118.3.303.  Google Scholar

[25]

S. Mafé and J. Pellicer, Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model,, Phy. Rev. E, 71 (2005).   Google Scholar

[26]

C. Miller, An overview of the potassium channel family,, Genome Biology, 1 (2000).   Google Scholar

[27]

C. Miller, Ionic hopping defended,, J. Gen. Physiol., 113 (1999), 783.  doi: 10.1085/jgp.113.6.783.  Google Scholar

[28]

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres,, Nature, 260 (1976), 799.  doi: 10.1038/260799a0.  Google Scholar

[29]

P. H. Nelson, A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis-Menten behavior,, J. Chem. Phys., 117 (2002), 11396.  doi: 10.1063/1.1522709.  Google Scholar

[30]

P. H. Nelson, Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.061908.  Google Scholar

[31]

P. H. Nelson, A permeation theory for single-file ion channels: One- and two-step models,, J. Chem. Phys., 134 (2011).  doi: 10.1063/1.3580562.  Google Scholar

[32]

M. Recanatini, A. Cavalli and M. Masetti, Modeling hERG and its interactions with drugs: Recent advances in light of current potassium channel simulations,, Chem. Med. Chem., 3 (2008), 523.  doi: 10.1002/cmdc.200700264.  Google Scholar

[33]

M. L. Renart, E. Montoya, A. M. Fernández, M. L. Molina, J. A. Poveda, J. A. Encinar, J. L. Ayala, A. V. Ferrer-Montiel, J. Gómez, A. Morales and J. M. González Ros, Controbution of Ion inding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel,, Biochemistry, 51 (2012), 3891.   Google Scholar

[34]

I. Schroeder, U. P. Hansen, Saturation and Microsecond Gating of Current Indicate Depletion-induced Instability of the MaxiK Selectivity Filter,, J. Gen. Physiol., 130 (2007), 83.  doi: 10.1085/jgp.200709802.  Google Scholar

[35]

A. M. J. VanDongen, Structure and Function of Ion Channels: A Hole in Four?,, Comm. Theor. Biol., 2 (1992), 429.   Google Scholar

[36]

A. M. J. VanDongen, K channel gating by an affinity-switching selectivity filter,, PNAS, 101 (2004), 3248.  doi: 10.1073/pnas.0308743101.  Google Scholar

[37]

Y. Zhou and R. Mackinnon, The occupancy of ions in the K$^+$ Selectivity Filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates,, J. Mol. Biol., 333 (2003), 965.  doi: 10.1016/j.jmb.2003.09.022.  Google Scholar

[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (4)

[Back to Top]