-
Previous Article
Mixed norms, functional Inequalities, and Hamilton-Jacobi equations
- DCDS-B Home
- This Issue
-
Next Article
Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour
Effect of intracellular diffusion on current--voltage curves in potassium channels
1. | Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via A. Scarpa 16, I-00161, Roma, Italy, Italy, Italy, Italy |
References:
[1] |
A. Abenavoli, M. L. Di Francesco, I. Schroeder, S. Epimoshko, S. Gazzarini, U. P. Hansen G. Thiel and A. Moroni, Fast and slow gating are inherent properties of the pore module of the K$^+$ channel Kcv, J. Gen. Physiol., 134 (2009), 219-229.
doi: 10.1085/jgp.200910266. |
[2] |
D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Monte Carlo study of gating and selection in potassium channels, Physical Review E, 84 (2011), 021920.
doi: 10.1103/PhysRevE.84.021920. |
[3] |
D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Flux through a time-periodic gate: Monte Carlo test of a Homogenization result, Simultech 2013, Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 626-635. |
[4] |
D. Andreucci and D. Bellaveglia, Permeability of interfaces with alternating pores in parabolic problems, Asymptotic Analysis, 79 (2012), 189-227. |
[5] |
J. rAqvist and V. Luzhkov, Ion permeation mechanism of the potassium channel, Nature, 404 (2000), 881-884. |
[6] |
S. Bernèche and B. Roux, A microscopic view of ion conduction through the K$^+$ channel, PNAS, 100 (2003), 8644-8648. |
[7] |
S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules, J. Chem. Phys., 115 (2001), 3732-3741.
doi: 10.1063/1.1387447. |
[8] |
E. N. M. Cirillo and A. Muntean, Dynamics of pedestrians in regions with no visibility - a lattice model without exclusion, Physica A, 392 (2013), 3578-3588.
doi: 10.1016/j.physa.2013.04.029. |
[9] |
E. N. M. Cirillo and A. Muntean, Can cooperation slow down emergency evacuations?, Comptes Rendus Mecanique, 340 (2012), 626-628.
doi: 10.1016/j.crme.2012.09.003. |
[10] |
M. Ciszkowska, L. Zeng, E. O. Stejskal and J. G. Osteryoung, Transport of Thallium(I) Counterion in Polyelectrolyte Solution Determined by Voltammetry with Microelectrodes and by Pulsed-Field-Gradient, Spin-Echo NMR, J. Phys. Chem., 99 (1995), 11764-11769.
doi: 10.1021/j100030a022. |
[11] |
E. L. Cussler, Diffusion, Second Edition, Cambridge University Press, Cambridge, UK, 1997.
doi: 10.1017/CBO9780511805134. |
[12] |
D. A. Doyle, C. J. Morais, R. A. Pfuetzner, A. kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, The structure of the potassium channel: Molecular basis of K$^+$ conduction and selectivity, Science, 280 (1998), 69-77.
doi: 10.1126/science.280.5360.69. |
[13] |
J.-F. Dufréche, O. Bernard, S. Durand-Vidal and P. Turq, Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA, J. Phys. Chem. B, 109 (2005), 9873-9884. |
[14] |
D. Fedida and J. C. Hesketh, Gating of voltage-dependent potassium channels, Prog. Bio. Mol. Biology, 75 (2001), 165-199.
doi: 10.1016/S0079-6107(01)00006-2. |
[15] |
S. A. N. Goldstein, D. Bockenhauer, I. O'Kelly and N. Zilberberg, Potassium leak channels and the Kcnk family of two-p-domain subunits, Nature Reviews Neuroscience, 2 (2001), 175-184. |
[16] |
G. Grimmet and D. Stirzaker, Probability and Random Processes, Oxford University Press Inc., New York, US, 2001. |
[17] |
H. S. Harned and J. A. Shropshire, The Diffusion Coefficietn at $25^o$ of Potassium Chloride at Low Concentrations in $0.25$ Molar Aqueous Sucrose Solutions, J. of the American Chemical Society, 80 (1958), 5652-5653. |
[18] |
L. Heginbotham and R. MacKinnon, Conduction Properties of the Cloned Shaker K$^+$ Channel, Biophysical Journal, 65 (1993), 2089-2096.
doi: 10.1016/S0006-3495(93)81244-X. |
[19] |
B. Hille, Ion Channels of Excitable Membranes, Third Edition, Sinauer Associates Inc., Sunderland, MA, USA, 2001. |
[20] |
A. L. Hodgkin and A. F. Huxley, The components of membrane conductance in the giant axon of Loligo, J. Physiol., 116 (1952), 473-496. |
[21] |
A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre, J. Physiol., 128 (1955), 61-88. |
[22] |
A. L. Hodgkin and R. D. Keynes, The mobility and diffusion coefficient of potassium in giant axons from SEPIA, J. Physiol., 119 (1953), 513-528. |
[23] |
S. Imai, M. Osawa, K. Takeichi and I. Shimada, Structural basis underlying the dual gate properties of KcsA, PNAS, 107 (2010), 6216-6221.
doi: 10.1073/pnas.0911270107. |
[24] |
M. LeMasurier, L. Heginbotham and C. Miller, Kcsa: It's a Potassium Channel, J. Gen. Physiol., 118 (2001), 303-313.
doi: 10.1085/jgp.118.3.303. |
[25] |
S. Mafé and J. Pellicer, Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model, Phy. Rev. E, 71 (2005), 022901. |
[26] |
C. Miller, An overview of the potassium channel family, Genome Biology, 1 (2000), reviews0004. |
[27] |
C. Miller, Ionic hopping defended, J. Gen. Physiol., 113 (1999), 783-787.
doi: 10.1085/jgp.113.6.783. |
[28] |
E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, 260 (1976), 799-802.
doi: 10.1038/260799a0. |
[29] |
P. H. Nelson, A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis-Menten behavior, J. Chem. Phys., 117 (2002), 11396-11403.
doi: 10.1063/1.1522709. |
[30] |
P. H. Nelson, Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel, Phys. Rev. E, 68 (2003), 061908.
doi: 10.1103/PhysRevE.68.061908. |
[31] |
P. H. Nelson, A permeation theory for single-file ion channels: One- and two-step models, J. Chem. Phys., 134 (2011), 165102.
doi: 10.1063/1.3580562. |
[32] |
M. Recanatini, A. Cavalli and M. Masetti, Modeling hERG and its interactions with drugs: Recent advances in light of current potassium channel simulations, Chem. Med. Chem., 3 (2008), 523-535.
doi: 10.1002/cmdc.200700264. |
[33] |
M. L. Renart, E. Montoya, A. M. Fernández, M. L. Molina, J. A. Poveda, J. A. Encinar, J. L. Ayala, A. V. Ferrer-Montiel, J. Gómez, A. Morales and J. M. González Ros, Controbution of Ion inding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel, Biochemistry, 51 (2012), 3891-3900. |
[34] |
I. Schroeder, U. P. Hansen, Saturation and Microsecond Gating of Current Indicate Depletion-induced Instability of the MaxiK Selectivity Filter, J. Gen. Physiol., 130 (2007), 83-97.
doi: 10.1085/jgp.200709802. |
[35] |
A. M. J. VanDongen, Structure and Function of Ion Channels: A Hole in Four?, Comm. Theor. Biol., 2 (1992), 429-451. |
[36] |
A. M. J. VanDongen, K channel gating by an affinity-switching selectivity filter, PNAS, 101 (2004), 3248-3252.
doi: 10.1073/pnas.0308743101. |
[37] |
Y. Zhou and R. Mackinnon, The occupancy of ions in the K$^+$ Selectivity Filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates, J. Mol. Biol., 333 (2003), 965-975.
doi: 10.1016/j.jmb.2003.09.022. |
show all references
References:
[1] |
A. Abenavoli, M. L. Di Francesco, I. Schroeder, S. Epimoshko, S. Gazzarini, U. P. Hansen G. Thiel and A. Moroni, Fast and slow gating are inherent properties of the pore module of the K$^+$ channel Kcv, J. Gen. Physiol., 134 (2009), 219-229.
doi: 10.1085/jgp.200910266. |
[2] |
D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Monte Carlo study of gating and selection in potassium channels, Physical Review E, 84 (2011), 021920.
doi: 10.1103/PhysRevE.84.021920. |
[3] |
D. Andreucci, D. Bellaveglia, E. N. M. Cirillo and S. Marconi, Flux through a time-periodic gate: Monte Carlo test of a Homogenization result, Simultech 2013, Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 626-635. |
[4] |
D. Andreucci and D. Bellaveglia, Permeability of interfaces with alternating pores in parabolic problems, Asymptotic Analysis, 79 (2012), 189-227. |
[5] |
J. rAqvist and V. Luzhkov, Ion permeation mechanism of the potassium channel, Nature, 404 (2000), 881-884. |
[6] |
S. Bernèche and B. Roux, A microscopic view of ion conduction through the K$^+$ channel, PNAS, 100 (2003), 8644-8648. |
[7] |
S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules, J. Chem. Phys., 115 (2001), 3732-3741.
doi: 10.1063/1.1387447. |
[8] |
E. N. M. Cirillo and A. Muntean, Dynamics of pedestrians in regions with no visibility - a lattice model without exclusion, Physica A, 392 (2013), 3578-3588.
doi: 10.1016/j.physa.2013.04.029. |
[9] |
E. N. M. Cirillo and A. Muntean, Can cooperation slow down emergency evacuations?, Comptes Rendus Mecanique, 340 (2012), 626-628.
doi: 10.1016/j.crme.2012.09.003. |
[10] |
M. Ciszkowska, L. Zeng, E. O. Stejskal and J. G. Osteryoung, Transport of Thallium(I) Counterion in Polyelectrolyte Solution Determined by Voltammetry with Microelectrodes and by Pulsed-Field-Gradient, Spin-Echo NMR, J. Phys. Chem., 99 (1995), 11764-11769.
doi: 10.1021/j100030a022. |
[11] |
E. L. Cussler, Diffusion, Second Edition, Cambridge University Press, Cambridge, UK, 1997.
doi: 10.1017/CBO9780511805134. |
[12] |
D. A. Doyle, C. J. Morais, R. A. Pfuetzner, A. kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, The structure of the potassium channel: Molecular basis of K$^+$ conduction and selectivity, Science, 280 (1998), 69-77.
doi: 10.1126/science.280.5360.69. |
[13] |
J.-F. Dufréche, O. Bernard, S. Durand-Vidal and P. Turq, Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA, J. Phys. Chem. B, 109 (2005), 9873-9884. |
[14] |
D. Fedida and J. C. Hesketh, Gating of voltage-dependent potassium channels, Prog. Bio. Mol. Biology, 75 (2001), 165-199.
doi: 10.1016/S0079-6107(01)00006-2. |
[15] |
S. A. N. Goldstein, D. Bockenhauer, I. O'Kelly and N. Zilberberg, Potassium leak channels and the Kcnk family of two-p-domain subunits, Nature Reviews Neuroscience, 2 (2001), 175-184. |
[16] |
G. Grimmet and D. Stirzaker, Probability and Random Processes, Oxford University Press Inc., New York, US, 2001. |
[17] |
H. S. Harned and J. A. Shropshire, The Diffusion Coefficietn at $25^o$ of Potassium Chloride at Low Concentrations in $0.25$ Molar Aqueous Sucrose Solutions, J. of the American Chemical Society, 80 (1958), 5652-5653. |
[18] |
L. Heginbotham and R. MacKinnon, Conduction Properties of the Cloned Shaker K$^+$ Channel, Biophysical Journal, 65 (1993), 2089-2096.
doi: 10.1016/S0006-3495(93)81244-X. |
[19] |
B. Hille, Ion Channels of Excitable Membranes, Third Edition, Sinauer Associates Inc., Sunderland, MA, USA, 2001. |
[20] |
A. L. Hodgkin and A. F. Huxley, The components of membrane conductance in the giant axon of Loligo, J. Physiol., 116 (1952), 473-496. |
[21] |
A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre, J. Physiol., 128 (1955), 61-88. |
[22] |
A. L. Hodgkin and R. D. Keynes, The mobility and diffusion coefficient of potassium in giant axons from SEPIA, J. Physiol., 119 (1953), 513-528. |
[23] |
S. Imai, M. Osawa, K. Takeichi and I. Shimada, Structural basis underlying the dual gate properties of KcsA, PNAS, 107 (2010), 6216-6221.
doi: 10.1073/pnas.0911270107. |
[24] |
M. LeMasurier, L. Heginbotham and C. Miller, Kcsa: It's a Potassium Channel, J. Gen. Physiol., 118 (2001), 303-313.
doi: 10.1085/jgp.118.3.303. |
[25] |
S. Mafé and J. Pellicer, Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model, Phy. Rev. E, 71 (2005), 022901. |
[26] |
C. Miller, An overview of the potassium channel family, Genome Biology, 1 (2000), reviews0004. |
[27] |
C. Miller, Ionic hopping defended, J. Gen. Physiol., 113 (1999), 783-787.
doi: 10.1085/jgp.113.6.783. |
[28] |
E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, 260 (1976), 799-802.
doi: 10.1038/260799a0. |
[29] |
P. H. Nelson, A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis-Menten behavior, J. Chem. Phys., 117 (2002), 11396-11403.
doi: 10.1063/1.1522709. |
[30] |
P. H. Nelson, Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel, Phys. Rev. E, 68 (2003), 061908.
doi: 10.1103/PhysRevE.68.061908. |
[31] |
P. H. Nelson, A permeation theory for single-file ion channels: One- and two-step models, J. Chem. Phys., 134 (2011), 165102.
doi: 10.1063/1.3580562. |
[32] |
M. Recanatini, A. Cavalli and M. Masetti, Modeling hERG and its interactions with drugs: Recent advances in light of current potassium channel simulations, Chem. Med. Chem., 3 (2008), 523-535.
doi: 10.1002/cmdc.200700264. |
[33] |
M. L. Renart, E. Montoya, A. M. Fernández, M. L. Molina, J. A. Poveda, J. A. Encinar, J. L. Ayala, A. V. Ferrer-Montiel, J. Gómez, A. Morales and J. M. González Ros, Controbution of Ion inding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel, Biochemistry, 51 (2012), 3891-3900. |
[34] |
I. Schroeder, U. P. Hansen, Saturation and Microsecond Gating of Current Indicate Depletion-induced Instability of the MaxiK Selectivity Filter, J. Gen. Physiol., 130 (2007), 83-97.
doi: 10.1085/jgp.200709802. |
[35] |
A. M. J. VanDongen, Structure and Function of Ion Channels: A Hole in Four?, Comm. Theor. Biol., 2 (1992), 429-451. |
[36] |
A. M. J. VanDongen, K channel gating by an affinity-switching selectivity filter, PNAS, 101 (2004), 3248-3252.
doi: 10.1073/pnas.0308743101. |
[37] |
Y. Zhou and R. Mackinnon, The occupancy of ions in the K$^+$ Selectivity Filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates, J. Mol. Biol., 333 (2003), 965-975.
doi: 10.1016/j.jmb.2003.09.022. |
[1] |
Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control and Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002 |
[2] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2022, 18 (1) : 541-560. doi: 10.3934/jimo.2020167 |
[3] |
Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641 |
[4] |
Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic and Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841 |
[5] |
George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243 |
[6] |
Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188 |
[7] |
Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601 |
[8] |
Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4025-4041. doi: 10.3934/cpaa.2021142 |
[9] |
Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022004 |
[10] |
Ishak Alia, Mohamed Sofiane Alia. Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022048 |
[11] |
Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139 |
[12] |
Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249 |
[13] |
Carlos Munuera, Alonso Sepúlveda, Fernando Torres. Castle curves and codes. Advances in Mathematics of Communications, 2009, 3 (4) : 399-408. doi: 10.3934/amc.2009.3.399 |
[14] |
Vladimir Georgiev, Eugene Stepanov. Metric cycles, curves and solenoids. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1443-1463. doi: 10.3934/dcds.2014.34.1443 |
[15] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[16] |
Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves. Electronic Research Archive, 2021, 29 (6) : 3649-3654. doi: 10.3934/era.2021055 |
[17] |
Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 |
[18] |
Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems and Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016 |
[19] |
Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138 |
[20] |
Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]