September  2014, 19(7): 1855-1867. doi: 10.3934/dcdsb.2014.19.1855

Mixed norms, functional Inequalities, and Hamilton-Jacobi equations

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy, Italy

2. 

Dipartimento di Scienze di Base e Applicate, per l'Ingegneria-Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma

Received  April 2013 Revised  February 2014 Published  August 2014

In this paper we generalize the notion of hypercontractivity for nonlinear semigroups allowing the functions to belong to mixed spaces. As an application of this notion, we consider a class of Hamilton-Jacobi equations and we establish functional inequalities. More precisely, we get hypercontractivity for viscosity solutions given in terms of Hopf-Lax type formulas. In this framework, we consider different measures associated with the variables; consequently, using mixed norms, we find new inequalities. The novelty of this approach is the study of functional inequalities with mixed norms for semigroups.
Citation: Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855
References:
[1]

A. Avantaggiati and P. Loreti, Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators. II,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 525.  doi: 10.3934/dcdss.2009.2.525.  Google Scholar

[2]

A. Avantaggiati, P. Loreti and C. Pocci, On a class of Hamilton-Jacobi equations with related logarithmic Sobolev inequality, and optimality,, Commun. Appl. Ind. Math., 2 (2011), 1.  doi: 10.1685/journal.caim.389.  Google Scholar

[3]

A. Benedek and R. Panzone, The space $L^p$, with mixed norm,, Duke Math. J., 28 (1961), 301.  doi: 10.1215/S0012-7094-61-02828-9.  Google Scholar

[4]

S. G. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.  doi: 10.1016/S0021-7824(01)01208-9.  Google Scholar

[5]

S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities,, J. Funct. Anal., 163 (1999), 1.  doi: 10.1006/jfan.1998.3326.  Google Scholar

[6]

I. Gentil, Ultracontractive bounds on Hamilton-Jacobi solutions,, Bull. Sci. Math., 126 (2002), 507.  doi: 10.1016/S0007-4497(02)01128-4.  Google Scholar

[7]

L. Gross, Logarithmic Sobolev inequalities,, Amer. J. Math., 97 (1975), 1061.  doi: 10.2307/2373688.  Google Scholar

[8]

H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces,, A Wiley-Interscience Publication, (1987).   Google Scholar

show all references

References:
[1]

A. Avantaggiati and P. Loreti, Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators. II,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 525.  doi: 10.3934/dcdss.2009.2.525.  Google Scholar

[2]

A. Avantaggiati, P. Loreti and C. Pocci, On a class of Hamilton-Jacobi equations with related logarithmic Sobolev inequality, and optimality,, Commun. Appl. Ind. Math., 2 (2011), 1.  doi: 10.1685/journal.caim.389.  Google Scholar

[3]

A. Benedek and R. Panzone, The space $L^p$, with mixed norm,, Duke Math. J., 28 (1961), 301.  doi: 10.1215/S0012-7094-61-02828-9.  Google Scholar

[4]

S. G. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.  doi: 10.1016/S0021-7824(01)01208-9.  Google Scholar

[5]

S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities,, J. Funct. Anal., 163 (1999), 1.  doi: 10.1006/jfan.1998.3326.  Google Scholar

[6]

I. Gentil, Ultracontractive bounds on Hamilton-Jacobi solutions,, Bull. Sci. Math., 126 (2002), 507.  doi: 10.1016/S0007-4497(02)01128-4.  Google Scholar

[7]

L. Gross, Logarithmic Sobolev inequalities,, Amer. J. Math., 97 (1975), 1061.  doi: 10.2307/2373688.  Google Scholar

[8]

H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces,, A Wiley-Interscience Publication, (1987).   Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

[Back to Top]