September  2014, 19(7): 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics

1. 

King Abdulaziz University, Jeddah, Saudi Arabia, and Politecnico of Torino, Italy

2. 

Cadi Ayyad University, Ecole Nationale des Sciences Appliquées, Marrakech, Morocco

3. 

Departamento de Matemática Aplicada, Universidad de Granada

Received  April 2013 Revised  May 2013 Published  August 2014

This paper deals with the multiscale modeling of vehicular traffic according to a kinetic theory approach, where the microscopic state of vehicles is described by position, velocity and activity, namely a variable suitable to model the quality of the driver-vehicle micro-system. Interactions at the microscopic scale are modeled by methods of game theory, thus leading to the derivation of mathematical models within the framework of the kinetic theory. Macroscopic equations are derived by asymptotic limits from the underlying description at the lower scale. This approach shows the hypothesis under which macroscopic models known in the literature can be derived and how new models can be developed.
Citation: Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869
References:
[1]

L. Arlotti, N. Bellomo and E. De Angelis, Generalized kinetic (Boltzmann) models: Mathematical structures and applications,, Math. Models Methods Appl. Sci., 12 (2002), 567.  doi: 10.1142/S0218202502001799.  Google Scholar

[2]

L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions,, Appl. Math. Letters, 25 (2012), 490.  doi: 10.1016/j.aml.2011.09.043.  Google Scholar

[3]

A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[4]

A. Aw and M. Rascle, Resurrection of "second-order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[5]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Nat. Acad. Sci., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[6]

N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic,, J. Diff. Equations, 252 (2012), 1350.  doi: 10.1016/j.jde.2011.09.005.  Google Scholar

[7]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[8]

N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "Complexity'', and mathematical sciences,, Math. Models Methods Appl. Sci., 23 (2013), 1861.  doi: 10.1142/S021820251350053X.  Google Scholar

[9]

N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512300049.  Google Scholar

[10]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511400069.  Google Scholar

[11]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511400033.  Google Scholar

[12]

A. Bellouquid and M. Delitala, Asymptotic limits of a discrete Kinetic Theory model of vehicular traffic,, Appl. Math. Lett., 24 (2011), 672.  doi: 10.1016/j.aml.2010.12.004.  Google Scholar

[13]

S. Buchmuller and U. Weidman, Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities,, ETH Report Nr.132, (2006).   Google Scholar

[14]

V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow models II. Discrete velocity kinetic models,, Int. J. Non-linear Mechanics, 42 (2007), 411.  doi: 10.1016/j.ijnonlinmec.2006.02.008.  Google Scholar

[15]

V. Coscia, L. Fermo and N. Bellomo, On the mathematical theory of living systems II: The interplay between mathematics and system biology,, Comput. Math. Appl., 62 (2011), 3902.  doi: 10.1016/j.camwa.2011.09.043.  Google Scholar

[16]

C. F. Daganzo, Requiem for second order fluid approximations of traffic flow,, Transp. Res. B, 29 (1995), 277.  doi: 10.1016/0191-2615(95)00007-Z.  Google Scholar

[17]

E. De Angelis, Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems,, Mathl. Comp. Modelling, 29 (1999), 83.  doi: 10.1016/S0895-7177(99)00064-3.  Google Scholar

[18]

M. Delitala and A. Tosin, Mathematical modelling of vehicular traffic: A discrete kinetic theory approach,, Math. Models Methods Appl. Sci., 17 (2007), 901.  doi: 10.1142/S0218202507002157.  Google Scholar

[19]

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review,, J. Math. Biol., 65 (2012), 35.  doi: 10.1007/s00285-011-0452-2.  Google Scholar

[20]

D. Helbing, Traffic and related self-driven many-particle systems,, Review Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[21]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, Eur. Phys. J. B, 69 (2009), 539.  doi: 10.1140/epjb/e2009-00192-5.  Google Scholar

[22]

M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams,, Kinetic Rel. Models, 5 (2012), 843.  doi: 10.3934/krm.2012.5.843.  Google Scholar

[23]

D. Helbing and A. Johansson, On the controversy around Daganzo's requiem and for the Aw-Rascle's resurrection of second-order traffic flow models,, Eur. Phys. J., 69 (2009), 549.  doi: 10.1140/epjb/e2009-00182-7.  Google Scholar

[24]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic,, SIAM J. Appl. Math., 60 (2000), 1749.  doi: 10.1137/S0036139999356181.  Google Scholar

[25]

A. Klar and R. Wegener, Vehicular traffic: From microscopic to macroscopic description,, Transp. Theory Statist. Phys., 29 (2000), 479.  doi: 10.1080/00411450008205886.  Google Scholar

[26]

R. Illner, C. Kirchner and R. Pinnau, A derivation of the AW-Rascle traffic models from Fokker-Planck type kinetic models,, Quarterly Appl. Math., 67 (2009), 39.   Google Scholar

[27]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioural underlying mechanism underlying self-organization in human crowd,, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755.  doi: 10.1098/rspb.2009.0405.  Google Scholar

[28]

H. J. Payne, Models of freeway traffic and control,, in Mathematical Models of Public Systems. Simulation Councils Proceed. Series, 1 (1971), 51.   Google Scholar

show all references

References:
[1]

L. Arlotti, N. Bellomo and E. De Angelis, Generalized kinetic (Boltzmann) models: Mathematical structures and applications,, Math. Models Methods Appl. Sci., 12 (2002), 567.  doi: 10.1142/S0218202502001799.  Google Scholar

[2]

L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions,, Appl. Math. Letters, 25 (2012), 490.  doi: 10.1016/j.aml.2011.09.043.  Google Scholar

[3]

A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[4]

A. Aw and M. Rascle, Resurrection of "second-order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[5]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Nat. Acad. Sci., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[6]

N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic,, J. Diff. Equations, 252 (2012), 1350.  doi: 10.1016/j.jde.2011.09.005.  Google Scholar

[7]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[8]

N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "Complexity'', and mathematical sciences,, Math. Models Methods Appl. Sci., 23 (2013), 1861.  doi: 10.1142/S021820251350053X.  Google Scholar

[9]

N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512300049.  Google Scholar

[10]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511400069.  Google Scholar

[11]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511400033.  Google Scholar

[12]

A. Bellouquid and M. Delitala, Asymptotic limits of a discrete Kinetic Theory model of vehicular traffic,, Appl. Math. Lett., 24 (2011), 672.  doi: 10.1016/j.aml.2010.12.004.  Google Scholar

[13]

S. Buchmuller and U. Weidman, Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities,, ETH Report Nr.132, (2006).   Google Scholar

[14]

V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow models II. Discrete velocity kinetic models,, Int. J. Non-linear Mechanics, 42 (2007), 411.  doi: 10.1016/j.ijnonlinmec.2006.02.008.  Google Scholar

[15]

V. Coscia, L. Fermo and N. Bellomo, On the mathematical theory of living systems II: The interplay between mathematics and system biology,, Comput. Math. Appl., 62 (2011), 3902.  doi: 10.1016/j.camwa.2011.09.043.  Google Scholar

[16]

C. F. Daganzo, Requiem for second order fluid approximations of traffic flow,, Transp. Res. B, 29 (1995), 277.  doi: 10.1016/0191-2615(95)00007-Z.  Google Scholar

[17]

E. De Angelis, Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems,, Mathl. Comp. Modelling, 29 (1999), 83.  doi: 10.1016/S0895-7177(99)00064-3.  Google Scholar

[18]

M. Delitala and A. Tosin, Mathematical modelling of vehicular traffic: A discrete kinetic theory approach,, Math. Models Methods Appl. Sci., 17 (2007), 901.  doi: 10.1142/S0218202507002157.  Google Scholar

[19]

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review,, J. Math. Biol., 65 (2012), 35.  doi: 10.1007/s00285-011-0452-2.  Google Scholar

[20]

D. Helbing, Traffic and related self-driven many-particle systems,, Review Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[21]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, Eur. Phys. J. B, 69 (2009), 539.  doi: 10.1140/epjb/e2009-00192-5.  Google Scholar

[22]

M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams,, Kinetic Rel. Models, 5 (2012), 843.  doi: 10.3934/krm.2012.5.843.  Google Scholar

[23]

D. Helbing and A. Johansson, On the controversy around Daganzo's requiem and for the Aw-Rascle's resurrection of second-order traffic flow models,, Eur. Phys. J., 69 (2009), 549.  doi: 10.1140/epjb/e2009-00182-7.  Google Scholar

[24]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic,, SIAM J. Appl. Math., 60 (2000), 1749.  doi: 10.1137/S0036139999356181.  Google Scholar

[25]

A. Klar and R. Wegener, Vehicular traffic: From microscopic to macroscopic description,, Transp. Theory Statist. Phys., 29 (2000), 479.  doi: 10.1080/00411450008205886.  Google Scholar

[26]

R. Illner, C. Kirchner and R. Pinnau, A derivation of the AW-Rascle traffic models from Fokker-Planck type kinetic models,, Quarterly Appl. Math., 67 (2009), 39.   Google Scholar

[27]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioural underlying mechanism underlying self-organization in human crowd,, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755.  doi: 10.1098/rspb.2009.0405.  Google Scholar

[28]

H. J. Payne, Models of freeway traffic and control,, in Mathematical Models of Public Systems. Simulation Councils Proceed. Series, 1 (1971), 51.   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[3]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[4]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[7]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[8]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[9]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[15]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[16]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[17]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[18]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[19]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[20]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (48)

[Back to Top]