September  2014, 19(7): 1889-1909. doi: 10.3934/dcdsb.2014.19.1889

Mathematical modeling of phase transition and separation in fluids: A unified approach

1. 

Facoltà di Ingegneria, Università e-Campus, 22060 Novedrate (CO)

2. 

DICATAM, Università di Brescia, Via Valotti, 9 - 25133 Brescia

3. 

DIBRIS, Università di Genova, Via Opera Pia 13, 16145 Genova

Received  April 2013 Revised  January 2014 Published  August 2014

A unified phase-field continuum theory is developed for transition and separation phenomena. A nonlocal formulation of the second law which involves an extra-entropy flux gives the basis of the thermodynamic approach. The phase-field is regarded as an additional variable related to some phase concentration, and its evolution is ruled by a balance equation, where flux and source terms are (unknown) constitutive functions. This evolution equation reduces to an equation of the rate-type when the flux is negligible, and it takes the form of a diffusion equation when the source term is disregarded. On this background, a general model for first-order transition and separation processes in a compressible fluid or fluid mixture is developed. Upon some simplifications, we apply it to the liquid-vapor phase change induced either by temperature or by pressure and we derive the expression of the vapor pressure curve. Taking into account the flux term, the sign of the diffusivity is discusssed.
Citation: Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889
References:
[1]

H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter,, Adv. Math. Sci. Appl., 6 (1996), 291.   Google Scholar

[2]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilibrium Thermodyn, 34 (2009), 219.  doi: 10.1515/JNETDY.2009.012.  Google Scholar

[3]

A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics,, AAPP Phys. Math. Nat. Sci., 91 (2013).   Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., ().  doi: 10.1007/s11012-014-9909-x.  Google Scholar

[5]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293.   Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.  doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

E. Bonetti and M. Frémond, A phase transition model with the entropy balance,, Math. Methods Appl. Sci., 26 (2003), 539.  doi: 10.1002/mma.366.  Google Scholar

[8]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer New York, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[10]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167.  doi: 10.1007/BF01262690.  Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics,, Phys. D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Internat. J. Engrg. Sci., 47 (2009), 821.  doi: 10.1016/j.ijengsci.2009.05.010.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565.  doi: 10.3934/dcdss.2011.4.565.  Google Scholar

[14]

M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech. B Fluids, 30 (2011), 281.  doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[15]

M. Frémond, Non-Smooth Thermomechanics,, Springer New york, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[16]

M. Frémond, Phase Changes in Mechanics,, Springer New york, (2012).   Google Scholar

[17]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67.  doi: 10.1007/s00032-009-0101-z.  Google Scholar

[18]

A. E. Green and N. Laws, On a global entropy production inequality,, Quart. J. Mech. Appl. Math., 25 (1972), 1.  doi: 10.1093/qjmam/25.1.1.  Google Scholar

[19]

K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles,, in Entropy, (2003).   Google Scholar

[20]

R. A. L. Jones, Soft condensed matter,, Eur. J. Phys., 23 (2002).  doi: 10.1088/0143-0807/23/6/703.  Google Scholar

[21]

A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions,, Phys. Rev. E, 57 (1998), 4323.  doi: 10.1103/PhysRevE.57.4323.  Google Scholar

[22]

A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling,, Milan J. Math., 79 (2011), 597.  doi: 10.1007/s00032-011-0171-6.  Google Scholar

[23]

G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction,, World Scientific Singapore, (1999).  doi: 10.1142/3700.  Google Scholar

[24]

G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts,, J. Non-Equilibrium Thermodyn, 19 (1994), 217.  doi: 10.1515/jnet.1994.19.3.217.  Google Scholar

[25]

A. Morro, A phase-field approach to non-isothermal transitions,, Math. Comput. Modelling, 48 (2008), 621.  doi: 10.1016/j.mcm.2007.11.001.  Google Scholar

[26]

I. Müller, Thermodynamics,, Pitman Boston, (1985).   Google Scholar

[27]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44.  doi: 10.1016/0167-2789(90)90015-H.  Google Scholar

[28]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model,, Phys. D, 69 (1993), 107.  doi: 10.1016/0167-2789(93)90183-2.  Google Scholar

[29]

I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008), 106501.  doi: 10.1088/0034-4885/71/10/106501.  Google Scholar

[30]

P. Ván, Weakly nonlocal irreversible thermodynamics,, Ann. Phys. (8), 12 (2003), 146.  doi: 10.1002/andp.200310002.  Google Scholar

show all references

References:
[1]

H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter,, Adv. Math. Sci. Appl., 6 (1996), 291.   Google Scholar

[2]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilibrium Thermodyn, 34 (2009), 219.  doi: 10.1515/JNETDY.2009.012.  Google Scholar

[3]

A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics,, AAPP Phys. Math. Nat. Sci., 91 (2013).   Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., ().  doi: 10.1007/s11012-014-9909-x.  Google Scholar

[5]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293.   Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.  doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

E. Bonetti and M. Frémond, A phase transition model with the entropy balance,, Math. Methods Appl. Sci., 26 (2003), 539.  doi: 10.1002/mma.366.  Google Scholar

[8]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer New York, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[10]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167.  doi: 10.1007/BF01262690.  Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics,, Phys. D, 214 (2006), 144.  doi: 10.1016/j.physd.2006.01.002.  Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Internat. J. Engrg. Sci., 47 (2009), 821.  doi: 10.1016/j.ijengsci.2009.05.010.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565.  doi: 10.3934/dcdss.2011.4.565.  Google Scholar

[14]

M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, Eur. J. Mech. B Fluids, 30 (2011), 281.  doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[15]

M. Frémond, Non-Smooth Thermomechanics,, Springer New york, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[16]

M. Frémond, Phase Changes in Mechanics,, Springer New york, (2012).   Google Scholar

[17]

C. Giorgi, Continuum thermodynamics and phase-field models,, Milan J. Math., 77 (2009), 67.  doi: 10.1007/s00032-009-0101-z.  Google Scholar

[18]

A. E. Green and N. Laws, On a global entropy production inequality,, Quart. J. Mech. Appl. Math., 25 (1972), 1.  doi: 10.1093/qjmam/25.1.1.  Google Scholar

[19]

K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles,, in Entropy, (2003).   Google Scholar

[20]

R. A. L. Jones, Soft condensed matter,, Eur. J. Phys., 23 (2002).  doi: 10.1088/0143-0807/23/6/703.  Google Scholar

[21]

A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions,, Phys. Rev. E, 57 (1998), 4323.  doi: 10.1103/PhysRevE.57.4323.  Google Scholar

[22]

A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling,, Milan J. Math., 79 (2011), 597.  doi: 10.1007/s00032-011-0171-6.  Google Scholar

[23]

G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction,, World Scientific Singapore, (1999).  doi: 10.1142/3700.  Google Scholar

[24]

G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts,, J. Non-Equilibrium Thermodyn, 19 (1994), 217.  doi: 10.1515/jnet.1994.19.3.217.  Google Scholar

[25]

A. Morro, A phase-field approach to non-isothermal transitions,, Math. Comput. Modelling, 48 (2008), 621.  doi: 10.1016/j.mcm.2007.11.001.  Google Scholar

[26]

I. Müller, Thermodynamics,, Pitman Boston, (1985).   Google Scholar

[27]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44.  doi: 10.1016/0167-2789(90)90015-H.  Google Scholar

[28]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model,, Phys. D, 69 (1993), 107.  doi: 10.1016/0167-2789(93)90183-2.  Google Scholar

[29]

I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008), 106501.  doi: 10.1088/0034-4885/71/10/106501.  Google Scholar

[30]

P. Ván, Weakly nonlocal irreversible thermodynamics,, Ann. Phys. (8), 12 (2003), 146.  doi: 10.1002/andp.200310002.  Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[3]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[4]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[5]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[9]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[10]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[19]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[20]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]