-
Previous Article
An existence criterion for the $\mathcal{PT}$-symmetric phase transition
- DCDS-B Home
- This Issue
-
Next Article
Discontinuity waves as tipping points: Applications to biological & sociological systems
Singular limit of an integrodifferential system related to the entropy balance
1. | Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia |
References:
[1] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, (2012).
doi: 10.1007/978-1-4614-1692-0. |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Noordhoff International Publishing, (1976).
|
[3] |
E. Bonetti, P. Colli and M. Frémond, A phase field model with thermal memory governed by the entropy balance,, Math. Models Methods Appl. Sci., 13 (2003), 1565.
doi: 10.1142/S0218202503003033. |
[4] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1001.
doi: 10.3934/dcdsb.2006.6.1001. |
[5] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Global solution to a singular integrodifferential system related to the entropy balance,, Nonlinear Anal., 66 (2007), 1949.
doi: 10.1016/j.na.2006.02.035. |
[6] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.
doi: 10.1016/j.jde.2009.02.007. |
[7] |
E. Bonetti, M. Frémond and E. Rocca, A new dual approach for a class of phase transitions with memory: Existence and long-time behaviour of solutions,, J. Math. Pures Appl., 88 (2007), 455.
doi: 10.1016/j.matpur.2007.09.005. |
[8] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland Math. Stud., (1973).
|
[9] |
G. Canevari and P. Colli, Solvability and asymptotic analysis of a generalization of the Caginalp phase field system,, Commun. Pure Appl. Anal., 11 (2012), 1959.
doi: 10.3934/cpaa.2012.11.1959. |
[10] |
G. Canevari and P. Colli, Convergence properties for a generalization of the Caginalp phase field system,, Asymptot. Anal., 82 (2013), 139.
doi: 10.3233/ASY-2012-1142. |
[11] |
M. Frémond, Non-smooth Thermomechanics,, Springer-Verlag, (2002).
doi: 10.1007/978-3-662-04800-9. |
[12] |
G. Gilardi and E. Rocca, Convergence of phase field to phase relaxation governed by the entropy balance with memory,, Math. Methods Appl. Sci., 29 (2006), 2149.
doi: 10.1002/mma.765. |
[13] |
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermo-mechanics,, Proc. Roy. Soc. Lond. A, 432 (1991), 171.
doi: 10.1098/rspa.1991.0012. |
[14] |
G. Gripenberg, S-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Encyclopedia Math. Appl., (1990).
doi: 10.1017/CBO9780511662805. |
[15] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.
doi: 10.1007/BF00281373. |
[16] |
P. Podio-Guidugli, A virtual power format for thermomechanics,, Contin. Mech. Thermodyn., 20 (2009), 479.
doi: 10.1007/s00161-009-0093-5. |
[17] |
J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.
doi: 10.1007/BF01762360. |
show all references
References:
[1] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, (2012).
doi: 10.1007/978-1-4614-1692-0. |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Noordhoff International Publishing, (1976).
|
[3] |
E. Bonetti, P. Colli and M. Frémond, A phase field model with thermal memory governed by the entropy balance,, Math. Models Methods Appl. Sci., 13 (2003), 1565.
doi: 10.1142/S0218202503003033. |
[4] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1001.
doi: 10.3934/dcdsb.2006.6.1001. |
[5] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Global solution to a singular integrodifferential system related to the entropy balance,, Nonlinear Anal., 66 (2007), 1949.
doi: 10.1016/j.na.2006.02.035. |
[6] |
E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.
doi: 10.1016/j.jde.2009.02.007. |
[7] |
E. Bonetti, M. Frémond and E. Rocca, A new dual approach for a class of phase transitions with memory: Existence and long-time behaviour of solutions,, J. Math. Pures Appl., 88 (2007), 455.
doi: 10.1016/j.matpur.2007.09.005. |
[8] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland Math. Stud., (1973).
|
[9] |
G. Canevari and P. Colli, Solvability and asymptotic analysis of a generalization of the Caginalp phase field system,, Commun. Pure Appl. Anal., 11 (2012), 1959.
doi: 10.3934/cpaa.2012.11.1959. |
[10] |
G. Canevari and P. Colli, Convergence properties for a generalization of the Caginalp phase field system,, Asymptot. Anal., 82 (2013), 139.
doi: 10.3233/ASY-2012-1142. |
[11] |
M. Frémond, Non-smooth Thermomechanics,, Springer-Verlag, (2002).
doi: 10.1007/978-3-662-04800-9. |
[12] |
G. Gilardi and E. Rocca, Convergence of phase field to phase relaxation governed by the entropy balance with memory,, Math. Methods Appl. Sci., 29 (2006), 2149.
doi: 10.1002/mma.765. |
[13] |
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermo-mechanics,, Proc. Roy. Soc. Lond. A, 432 (1991), 171.
doi: 10.1098/rspa.1991.0012. |
[14] |
G. Gripenberg, S-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Encyclopedia Math. Appl., (1990).
doi: 10.1017/CBO9780511662805. |
[15] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.
doi: 10.1007/BF00281373. |
[16] |
P. Podio-Guidugli, A virtual power format for thermomechanics,, Contin. Mech. Thermodyn., 20 (2009), 479.
doi: 10.1007/s00161-009-0093-5. |
[17] |
J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.
doi: 10.1007/BF01762360. |
[1] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020459 |
[2] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[3] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[4] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[5] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[6] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[7] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[8] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[9] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[10] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[11] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[12] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[13] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[14] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[15] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[16] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[17] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[18] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[19] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[20] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]