Advanced Search
Article Contents
Article Contents

Singular limit of an integrodifferential system related to the entropy balance

Abstract Related Papers Cited by
  • A thermodynamic model describing phase transitions with thermal memory, in terms of an entropy equation and a momentum balance for the microforces, is adressed. Convergence results and error estimates are proved for the related integrodifferential system of PDE as the sequence of memory kernels converges to a multiple of a Dirac delta, in a suitable sense.
    Mathematics Subject Classification: Primary: 35K55, 35B40; Secondary: 35Q79, 80A22.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York, 2012.doi: 10.1007/978-1-4614-1692-0.


    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.


    E. Bonetti, P. Colli and M. Frémond, A phase field model with thermal memory governed by the entropy balance, Math. Models Methods Appl. Sci., 13 (2003), 1565-1588.doi: 10.1142/S0218202503003033.


    E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1001-1026.doi: 10.3934/dcdsb.2006.6.1001.


    E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Global solution to a singular integrodifferential system related to the entropy balance, Nonlinear Anal., 66 (2007), 1949-1979.doi: 10.1016/j.na.2006.02.035.


    E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system, J. Differential Equations, 246 (2009), 3260-3295.doi: 10.1016/j.jde.2009.02.007.


    E. Bonetti, M. Frémond and E. Rocca, A new dual approach for a class of phase transitions with memory: Existence and long-time behaviour of solutions, J. Math. Pures Appl., 88 (2007), 455-481.doi: 10.1016/j.matpur.2007.09.005.


    H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland, Amsterdam, 1973.


    G. Canevari and P. Colli, Solvability and asymptotic analysis of a generalization of the Caginalp phase field system, Commun. Pure Appl. Anal., 11 (2012), 1959-1982.doi: 10.3934/cpaa.2012.11.1959.


    G. Canevari and P. Colli, Convergence properties for a generalization of the Caginalp phase field system, Asymptot. Anal., 82 (2013), 139-162.doi: 10.3233/ASY-2012-1142.


    M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002.doi: 10.1007/978-3-662-04800-9.


    G. Gilardi and E. Rocca, Convergence of phase field to phase relaxation governed by the entropy balance with memory, Math. Methods Appl. Sci., 29 (2006), 2149-2179.doi: 10.1002/mma.765.


    A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermo-mechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171-194.doi: 10.1098/rspa.1991.0012.


    G. Gripenberg, S-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Encyclopedia Math. Appl., 34, Cambridge University Press, Cambridge, 1990.doi: 10.1017/CBO9780511662805.


    M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.doi: 10.1007/BF00281373.


    P. Podio-Guidugli, A virtual power format for thermomechanics, Contin. Mech. Thermodyn., 20 (2009), 479-487.doi: 10.1007/s00161-009-0093-5.


    J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

  • 加载中

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint