Advanced Search
Article Contents
Article Contents

An existence criterion for the $\mathcal{PT}$-symmetric phase transition

Abstract Related Papers Cited by
  • We consider on $L^2(\mathbb{R})$ the Schrödinger operator family $H(g)$ with domain and action defined as follows $$ D(H(g))=H^2(\mathbb{R})\cap L^2_{2M}(\mathbb{R}); \quad H(g) u=\bigg(-\frac{d^2}{dx^2}+\frac{x^{2M}}{2M}-g\,\frac{x^{M-1}}{M-1}\bigg)u $$ where $g\in\mathbb{C}$, $M=2,4,\ldots\;$. $H(g)$ is self-adjoint if $g\in\mathbb{R}$, while $H(ig)$ is $\mathcal{PT}$-symmetric. We prove that $H(ig)$ exhibits the so-called $\mathcal{PT}$-symmetric phase transition. Namely, for each eigenvalue $E_n(ig)$ of $H(ig)$, $g\in\mathbb{R}$, there exist $R_1(n)>R(n)>0$ such that $E_n(ig)\in\mathbb{R}$ for $|g| < R(n)$ and turns into a pair of complex conjugate eigenvalues for $|g| > R_1(n)$.
    Mathematics Subject Classification: 34Lxx, 81Q10, 81Q12, 81Q15.


    \begin{equation} \\ \end{equation}
  • [1]

    N. I. Akhiezer, The Classical Moment Problem, Oliver & Boyd, Edinburgh, 1965.


    C. M. Bender, S. Boettcher and P. N. Meisinger, PT-Symmetric quantum mechanics, J. Math. Phys., 40 (1999), 2201-2229.doi: 10.1063/1.532860.


    C. M. Bender, M. V. Berry and A. Mandilara, Generalized PT symmetry and real spectra, J.Phys. A: Math. Gen., 35 (2002), L467-L471.doi: 10.1088/0305-4470/35/31/101.


    C. M. Bender, D. C. Brody and H. F. Jones, Must a hamiltonian be hermitian?, American Journal of Physics, 71 (2003), 1095-1102.doi: 10.1119/1.1574043.


    C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having PT symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.doi: 10.1103/PhysRevLett.80.5243.


    P. Dorey, C. Dunning and R. Tateo, Spectral equivalences, Bethe ansatz equations and reality properties of $\mathcal{PT}$-symmetric quantum mechanics, J. Phys. A, 34 (2001), 5679-5704.doi: 10.1088/0305-4470/34/28/305.


    P. Dorey, C. Dunning and R. Tateo, Supersymmetry and the spontaneous breakdown of $\mathcal{PT}$ symmetry, J. Phys. A, 34 (2001), L391.


    P. Dorey, C. Dunning, A. Lishman and R. Tateo, $\mathcal{PT}$-symmetry breaking for a class of inhomogeneous complex potentials, J. Phys. A, 42 (2009), 465302.doi: 10.1088/1751-8113/42/46/465302.


    S. Graffi, V. Grecchi and B. Simon, Borel summability: Application to the anharmonic ocillator, Phys. Lett., 32B (1970), 631-634.


    I. W. Herbst, Dilation analyticity in constant electric field, Comm. Math. Phys., 64 (1979), 279-298.doi: 10.1007/BF01221735.


    W. Hunziker and C. A.Pillet, Degenerate asymptotic perurbation theory, Comm. Math. Phys., 90 (1983), 219-233.


    T. Kato, Perturbation Theory for Linear Operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976. xxi+619 pp.


    J. J. Loeffel and A. Martin, Proprietés analytiques des niveaux de l'oscillateur anharmonique et convergence des approximants de Padé, Cargèse Lectures in Physics, Gordon and Breach, New York, 5 (1972), 415-429.


    J. J. Loeffel, A. Martin, B. Simon and A. S.Wightman, Padé Approximants and the Anharmonic Oscillator, Phys. Lett., 30B (1969), 656-658.


    M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Academic Press 1978.


    K. C. Shin, On the reality of the eigenvalues for a class of $PT$-symmetric oscillators, Comm. Math. Phys., 229 (2002), 543-564.doi: 10.1007/s00220-002-0706-3.


    B. Simon, Coupling constant analyticity for the anharmonic oscillator, Ann. Phys. (N.Y.), 58 (1970), 76-136.doi: 10.1016/0003-4916(70)90240-X.


    Y. Sibuya, Global Theory of Second Order Linear Differential Equations with Polynomial Coefficients, North Holland, Amsterdam 1975.


    J. Sjöstrand, Private Communication.

  • 加载中

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint