September  2014, 19(7): 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

Uniform weighted estimates on pre-fractal domains

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università di Roma "Sapienza", Via A. Scarpa 16, 00161 Roma, Italy, Italy

Received  April 2013 Revised  January 2014 Published  August 2014

We establish uniform estimates in weighted Sobolev spaces for the solutions of the Dirichlet problems on snowflake pre-fractal domains.
Citation: Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969
References:
[1]

Y. Achdou, T. Deheuvels and N. Tchou, JLip versus Sobolev spaces on a class of self-similar fractal foliages,, J. Math. Pures Appl. (9), 97 (2012), 142.  doi: 10.1016/j.matpur.2011.07.002.  Google Scholar

[2]

Y. Achdou, C. Sabot and N. Tchou, Diffusion and propagation problems in some ramified domains with a fractal boundary,, M2AN Math. Model. Numer. Anal., 40 (2006), 623.  doi: 10.1051/m2an:2006027.  Google Scholar

[3]

Y. Achdou and N. Tchou, Neumann conditions on fractal boundaries,, Asymptot. Anal., 53 (2007), 61.   Google Scholar

[4]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[5]

B. Bennewitz and J. L. Lewis, On the dimension of p-harmonic measure,, Ann. Acad. Sci. Fenn. Math., 30 (2005), 459.   Google Scholar

[6]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket,, Probab. Theory. Related Fields, 79 (1988), 543.  doi: 10.1007/BF00318785.  Google Scholar

[7]

R. F. Bass, K. Burdzy and Z.Chen, On the Robin problem in fractal domains,, Proc. Lond. Math. Soc. (3), 96 (2008), 273.  doi: 10.1112/plms/pdm045.  Google Scholar

[8]

M. T. Barlow, R. F. Bass, T. Kumagai and A. Teplyaev, Uniqueness of Brownian motion on Sierpinski carpets,, J. Eur. Math. Soc. (JEMS), 12 (2010), 655.   Google Scholar

[9]

M. Borsuk and V. A. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains,, North-Holland Mathematical Library, (2006).  doi: 10.1016/S0924-6509(06)80026-7.  Google Scholar

[10]

R. Capitanelli, Transfer across scale irregular domains,, Applied and industrial mathematics in Italy III, 82 (2010), 165.  doi: 10.1142/9789814280303_0015.  Google Scholar

[11]

R. Capitanelli, Robin boundary condition on scale irregular fractals,, Commun. Pure Appl. Anal., 9 (2010), 1221.  doi: 10.3934/cpaa.2010.9.1221.  Google Scholar

[12]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains,, J. Math. Anal. Appl., 362 (2010), 450.  doi: 10.1016/j.jmaa.2009.09.042.  Google Scholar

[13]

R. Capitanelli and M. A. Vivaldi, Insulating layers and Robin problems on Koch mixtures,, J. Differential Equations, 251 (2011), 1332.  doi: 10.1016/j.jde.2011.02.003.  Google Scholar

[14]

R. Capitanelli and M. A. Vivaldi, On the Laplacean transfer across fractal mixtures,, Asymptot. Anal., 83 (2013), 1.   Google Scholar

[15]

R. Capitanelli, M. R. Lancia and M. A. Vivaldi, Insulating layers of fractal type,, Differential and Integral Equations, 26 (2013), 1055.   Google Scholar

[16]

B. E. J. Dahlberg, $L^q$-estimates for Green potentials in Lipschitz domains,, Math. Scand., 44 (1979), 149.   Google Scholar

[17]

M. Filoche and B. Sapoval, Transfer across random versus Deterministic Fractal Interfaces,, Phys. Rev. Lett., 84 (2000), 5776.  doi: 10.1103/PhysRevLett.84.5776.  Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1983).   Google Scholar

[19]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical Basis for a General Theory of Laplacian Transport towards Irregular Interfaces,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.021103.  Google Scholar

[20]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[21]

J. E. Hutchinson, Fractals and selfsimilarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[22]

D. S. Jerison and C. E. Kenig, Boundary behaviour of harmonic functions in non-tangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[23]

A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbbR^n$,, Math. Rep., 2 (1984).   Google Scholar

[24]

A. Jonsson and H. Wallin, Boundary value problems and Brownian motion on fractals,, Chaos Solitons Fractals, 8 (1997), 191.  doi: 10.1016/S0960-0779(96)00048-3.  Google Scholar

[25]

J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[26]

V. A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov. Mat. Ob., 16 (1967), 209.   Google Scholar

[27]

S. Kusuoka, A diffusion Process on a Fractal,, Probabilistic Methods in Mathematical Physics, (1987), 251.   Google Scholar

[28]

S. Kusuoka, Diffusion Processes in Nested Fractals,, Lect. Notes in Math., (1567).   Google Scholar

[29]

M. R. Lancia and M. A. Vivaldi, On the regularity of the solutions for transmission problems,, Adv. Math. Sci. Appl., 12 (2002), 455.   Google Scholar

[30]

M. R. Lancia and M. A. Vivaldi, Asymptotic convergence of transmission energy forms,, Adv. Math. Sc. Appl., 13 (2003), 315.   Google Scholar

[31]

M. R. Lancia, U. Mosco and M. A. Vivaldi, Homogenization for conductive thin layers of pre-fractal type,, J. Math. Anal. Appl., 347 (2008), 354.  doi: 10.1016/j.jmaa.2008.06.011.  Google Scholar

[32]

T. Lindstrøm, Brownian motion penetrating the Sierpinski gasket,, Asymptotic Problems in Probability Theory, (1993), 248.   Google Scholar

[33]

V. G. Maz'ya, Sobolev Spaces,, {Springer-Verlag}, (1985).  doi: 10.1007/978-3-662-09922-3.  Google Scholar

[34]

V. G. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vol. I. Operator Theory: Advances and Applications, (2000).   Google Scholar

[35]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. in Math., 3 (1969), 510.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[36]

U. Mosco, Composite media and asymptotic Dirichlet forms,, J. Funct. Anal., 123 (1994), 368.  doi: 10.1006/jfan.1994.1093.  Google Scholar

[37]

U. Mosco, An elementary introduction to fractal analysis,, Nonlinear Analysis and Applications to Physical Sciences, (2004), 51.   Google Scholar

[38]

K. Nyström, Smoothness Properties of Dirichlet Problems in Domains with a Fractal Boundary,, Ph. D. Dissertation, (1994).   Google Scholar

[39]

K. Nyström, Integrability of Green potentials in fractal domains,, Ark. Mat., 34 (1996), 335.  doi: 10.1007/BF02559551.  Google Scholar

[40]

C. Pommerenke, Boundary Behaviour of Conformal Maps,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1992).  doi: 10.1007/978-3-662-02770-7.  Google Scholar

[41]

G. Savaré and G. Schimperna, Domain perturbations and estimates for the solutions of second order elliptic equations,, J. Math. Pures Appl. (9), 81 (2002), 1071.  doi: 10.1016/S0021-7824(02)01256-4.  Google Scholar

[42]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[43]

R. Strichartz, Differential Equations on Fractals,, Princeton University Press, (2006).   Google Scholar

[44]

A. Wannebo, Hardy inequalities,, Proc. Amer. Math. Soc., 109 (1990), 85.  doi: 10.1090/S0002-9939-1990-1010807-1.  Google Scholar

show all references

References:
[1]

Y. Achdou, T. Deheuvels and N. Tchou, JLip versus Sobolev spaces on a class of self-similar fractal foliages,, J. Math. Pures Appl. (9), 97 (2012), 142.  doi: 10.1016/j.matpur.2011.07.002.  Google Scholar

[2]

Y. Achdou, C. Sabot and N. Tchou, Diffusion and propagation problems in some ramified domains with a fractal boundary,, M2AN Math. Model. Numer. Anal., 40 (2006), 623.  doi: 10.1051/m2an:2006027.  Google Scholar

[3]

Y. Achdou and N. Tchou, Neumann conditions on fractal boundaries,, Asymptot. Anal., 53 (2007), 61.   Google Scholar

[4]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[5]

B. Bennewitz and J. L. Lewis, On the dimension of p-harmonic measure,, Ann. Acad. Sci. Fenn. Math., 30 (2005), 459.   Google Scholar

[6]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket,, Probab. Theory. Related Fields, 79 (1988), 543.  doi: 10.1007/BF00318785.  Google Scholar

[7]

R. F. Bass, K. Burdzy and Z.Chen, On the Robin problem in fractal domains,, Proc. Lond. Math. Soc. (3), 96 (2008), 273.  doi: 10.1112/plms/pdm045.  Google Scholar

[8]

M. T. Barlow, R. F. Bass, T. Kumagai and A. Teplyaev, Uniqueness of Brownian motion on Sierpinski carpets,, J. Eur. Math. Soc. (JEMS), 12 (2010), 655.   Google Scholar

[9]

M. Borsuk and V. A. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains,, North-Holland Mathematical Library, (2006).  doi: 10.1016/S0924-6509(06)80026-7.  Google Scholar

[10]

R. Capitanelli, Transfer across scale irregular domains,, Applied and industrial mathematics in Italy III, 82 (2010), 165.  doi: 10.1142/9789814280303_0015.  Google Scholar

[11]

R. Capitanelli, Robin boundary condition on scale irregular fractals,, Commun. Pure Appl. Anal., 9 (2010), 1221.  doi: 10.3934/cpaa.2010.9.1221.  Google Scholar

[12]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains,, J. Math. Anal. Appl., 362 (2010), 450.  doi: 10.1016/j.jmaa.2009.09.042.  Google Scholar

[13]

R. Capitanelli and M. A. Vivaldi, Insulating layers and Robin problems on Koch mixtures,, J. Differential Equations, 251 (2011), 1332.  doi: 10.1016/j.jde.2011.02.003.  Google Scholar

[14]

R. Capitanelli and M. A. Vivaldi, On the Laplacean transfer across fractal mixtures,, Asymptot. Anal., 83 (2013), 1.   Google Scholar

[15]

R. Capitanelli, M. R. Lancia and M. A. Vivaldi, Insulating layers of fractal type,, Differential and Integral Equations, 26 (2013), 1055.   Google Scholar

[16]

B. E. J. Dahlberg, $L^q$-estimates for Green potentials in Lipschitz domains,, Math. Scand., 44 (1979), 149.   Google Scholar

[17]

M. Filoche and B. Sapoval, Transfer across random versus Deterministic Fractal Interfaces,, Phys. Rev. Lett., 84 (2000), 5776.  doi: 10.1103/PhysRevLett.84.5776.  Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1983).   Google Scholar

[19]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical Basis for a General Theory of Laplacian Transport towards Irregular Interfaces,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.021103.  Google Scholar

[20]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[21]

J. E. Hutchinson, Fractals and selfsimilarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[22]

D. S. Jerison and C. E. Kenig, Boundary behaviour of harmonic functions in non-tangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[23]

A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbbR^n$,, Math. Rep., 2 (1984).   Google Scholar

[24]

A. Jonsson and H. Wallin, Boundary value problems and Brownian motion on fractals,, Chaos Solitons Fractals, 8 (1997), 191.  doi: 10.1016/S0960-0779(96)00048-3.  Google Scholar

[25]

J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[26]

V. A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov. Mat. Ob., 16 (1967), 209.   Google Scholar

[27]

S. Kusuoka, A diffusion Process on a Fractal,, Probabilistic Methods in Mathematical Physics, (1987), 251.   Google Scholar

[28]

S. Kusuoka, Diffusion Processes in Nested Fractals,, Lect. Notes in Math., (1567).   Google Scholar

[29]

M. R. Lancia and M. A. Vivaldi, On the regularity of the solutions for transmission problems,, Adv. Math. Sci. Appl., 12 (2002), 455.   Google Scholar

[30]

M. R. Lancia and M. A. Vivaldi, Asymptotic convergence of transmission energy forms,, Adv. Math. Sc. Appl., 13 (2003), 315.   Google Scholar

[31]

M. R. Lancia, U. Mosco and M. A. Vivaldi, Homogenization for conductive thin layers of pre-fractal type,, J. Math. Anal. Appl., 347 (2008), 354.  doi: 10.1016/j.jmaa.2008.06.011.  Google Scholar

[32]

T. Lindstrøm, Brownian motion penetrating the Sierpinski gasket,, Asymptotic Problems in Probability Theory, (1993), 248.   Google Scholar

[33]

V. G. Maz'ya, Sobolev Spaces,, {Springer-Verlag}, (1985).  doi: 10.1007/978-3-662-09922-3.  Google Scholar

[34]

V. G. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vol. I. Operator Theory: Advances and Applications, (2000).   Google Scholar

[35]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. in Math., 3 (1969), 510.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[36]

U. Mosco, Composite media and asymptotic Dirichlet forms,, J. Funct. Anal., 123 (1994), 368.  doi: 10.1006/jfan.1994.1093.  Google Scholar

[37]

U. Mosco, An elementary introduction to fractal analysis,, Nonlinear Analysis and Applications to Physical Sciences, (2004), 51.   Google Scholar

[38]

K. Nyström, Smoothness Properties of Dirichlet Problems in Domains with a Fractal Boundary,, Ph. D. Dissertation, (1994).   Google Scholar

[39]

K. Nyström, Integrability of Green potentials in fractal domains,, Ark. Mat., 34 (1996), 335.  doi: 10.1007/BF02559551.  Google Scholar

[40]

C. Pommerenke, Boundary Behaviour of Conformal Maps,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1992).  doi: 10.1007/978-3-662-02770-7.  Google Scholar

[41]

G. Savaré and G. Schimperna, Domain perturbations and estimates for the solutions of second order elliptic equations,, J. Math. Pures Appl. (9), 81 (2002), 1071.  doi: 10.1016/S0021-7824(02)01256-4.  Google Scholar

[42]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[43]

R. Strichartz, Differential Equations on Fractals,, Princeton University Press, (2006).   Google Scholar

[44]

A. Wannebo, Hardy inequalities,, Proc. Amer. Math. Soc., 109 (1990), 85.  doi: 10.1090/S0002-9939-1990-1010807-1.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]