September  2014, 19(7): 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

Spatial behavior in the vibrating thermoviscoelastic porous materials

1. 

Department of Mathematics, Al. I. Cuza University, 700506, Iaşi, Romania

Received  April 2013 Revised  July 2013 Published  August 2014

In this paper we study the spatial behavior of the amplitude of the steady-state vibrations in a thermoviscoelastic porous beam. Here we take into account the effects of the viscoelastic and thermal dissipation energies upon the corresponding harmonic vibrations in a right cylinder made of a thermoviscoelastic porous isotropic material. In fact, we prove that the positiveness of the viscoelastic and thermal dissipation energies are sufficient for characterizing the spatial decay and growth properties of the harmonic vibrations in a cylinder.
Citation: Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027
References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder,, Journal of Thermal Stresses, 18 (1995), 421. doi: 10.1080/01495739508946311. Google Scholar

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids,, Journal of Thermal Stresses, 24 (2001), 433. doi: 10.1080/01495730151126096. Google Scholar

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials,, Journal of Elasticity, 93 (2008), 81. doi: 10.1007/s10659-008-9167-z. Google Scholar

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region,, Mathematical Methods in the Applied Sciences, 33 (2010), 1743. doi: 10.1002/mma.1294. Google Scholar

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids,, Proceedings of the Royal Society A, 466 (2010), 439. Google Scholar

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids,, Journal of Elasticity, 32 (1993), 1. doi: 10.1007/BF00042245. Google Scholar

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids,, Journal of Mathematical Analysis and Applications, 333 (2007), 142. doi: 10.1016/j.jmaa.2006.09.014. Google Scholar

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids,, European Journal of Mechanics - A/Solids, 28 (2009), 897. doi: 10.1016/j.euromechsol.2009.03.008. Google Scholar

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids,, Journal of Elasticity, 13 (1983), 125. Google Scholar

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate,, Quarterly of Applied Mathematics, 61 (2003), 783. Google Scholar

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain,, Journal of Mathematical Analysis and Applications, 363 (2010), 454. doi: 10.1016/j.jmaa.2009.09.032. Google Scholar

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics,, Journal of Elasticity, 17 (1987), 249. doi: 10.1007/BF00049455. Google Scholar

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates,, International Journal of Solids and Structures, 48 (2011), 243. Google Scholar

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity,, Quarterly of Applied Mathematics, 67 (2009), 707. Google Scholar

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids,, Journal of Elasticity, 15 (1985), 215. doi: 10.1007/BF00041994. Google Scholar

[16]

D. Ieşan, A theory of thermoelastic material with voids,, Acta Mechanica, 60 (1986), 67. Google Scholar

[17]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic, (2004). doi: 10.1007/978-1-4020-2310-1. Google Scholar

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids,, Journal of Elasticity, 104 (2011), 369. doi: 10.1007/s10659-010-9300-7. Google Scholar

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids,, Meccanica, 39 (2004), 125. doi: 10.1023/B:MECC.0000005118.15612.01. Google Scholar

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids,, Journal of Thermal Stresses, 27 (2004), 209. doi: 10.1080/01495730490264330. Google Scholar

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,, Journal of Thermal Stresses, 36 (2013), 94. doi: 10.1080/01495739.2012.720545. Google Scholar

[22]

B. Straughan, Stability and Wave Motion in Porous Media,, Series in applied mathematical sciences, (2008). Google Scholar

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids,, Journal of Vibration and Control, 20 (2014), 1119. doi: 10.1177/1077546312470479. Google Scholar

show all references

References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder,, Journal of Thermal Stresses, 18 (1995), 421. doi: 10.1080/01495739508946311. Google Scholar

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids,, Journal of Thermal Stresses, 24 (2001), 433. doi: 10.1080/01495730151126096. Google Scholar

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials,, Journal of Elasticity, 93 (2008), 81. doi: 10.1007/s10659-008-9167-z. Google Scholar

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region,, Mathematical Methods in the Applied Sciences, 33 (2010), 1743. doi: 10.1002/mma.1294. Google Scholar

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids,, Proceedings of the Royal Society A, 466 (2010), 439. Google Scholar

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids,, Journal of Elasticity, 32 (1993), 1. doi: 10.1007/BF00042245. Google Scholar

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids,, Journal of Mathematical Analysis and Applications, 333 (2007), 142. doi: 10.1016/j.jmaa.2006.09.014. Google Scholar

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids,, European Journal of Mechanics - A/Solids, 28 (2009), 897. doi: 10.1016/j.euromechsol.2009.03.008. Google Scholar

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids,, Journal of Elasticity, 13 (1983), 125. Google Scholar

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate,, Quarterly of Applied Mathematics, 61 (2003), 783. Google Scholar

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain,, Journal of Mathematical Analysis and Applications, 363 (2010), 454. doi: 10.1016/j.jmaa.2009.09.032. Google Scholar

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics,, Journal of Elasticity, 17 (1987), 249. doi: 10.1007/BF00049455. Google Scholar

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates,, International Journal of Solids and Structures, 48 (2011), 243. Google Scholar

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity,, Quarterly of Applied Mathematics, 67 (2009), 707. Google Scholar

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids,, Journal of Elasticity, 15 (1985), 215. doi: 10.1007/BF00041994. Google Scholar

[16]

D. Ieşan, A theory of thermoelastic material with voids,, Acta Mechanica, 60 (1986), 67. Google Scholar

[17]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic, (2004). doi: 10.1007/978-1-4020-2310-1. Google Scholar

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids,, Journal of Elasticity, 104 (2011), 369. doi: 10.1007/s10659-010-9300-7. Google Scholar

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids,, Meccanica, 39 (2004), 125. doi: 10.1023/B:MECC.0000005118.15612.01. Google Scholar

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids,, Journal of Thermal Stresses, 27 (2004), 209. doi: 10.1080/01495730490264330. Google Scholar

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,, Journal of Thermal Stresses, 36 (2013), 94. doi: 10.1080/01495739.2012.720545. Google Scholar

[22]

B. Straughan, Stability and Wave Motion in Porous Media,, Series in applied mathematical sciences, (2008). Google Scholar

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids,, Journal of Vibration and Control, 20 (2014), 1119. doi: 10.1177/1077546312470479. Google Scholar

[1]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[2]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[3]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[4]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[5]

Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078

[6]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[7]

Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775

[8]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[9]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[10]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[11]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[12]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[13]

J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003

[14]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[15]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[16]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[17]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[18]

Emilian Bulgariu, Ionel-Dumitrel Ghiba. On the thermal stresses in anisotropic porous cylinders. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1539-1550. doi: 10.3934/dcdss.2013.6.1539

[19]

Carlos Castillo-Chavez, Bingtuan Li. Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences & Engineering, 2008, 5 (4) : 713-727. doi: 10.3934/mbe.2008.5.713

[20]

Alessandro Bertuzzi, Alberto d'Onofrio, Antonio Fasano, Alberto Gandolfi. Modelling cell populations with spatial structure: Steady state and treatment-induced evolution. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 161-186. doi: 10.3934/dcdsb.2004.4.161

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]