September  2014, 19(7): 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

Spatial behavior in the vibrating thermoviscoelastic porous materials

1. 

Department of Mathematics, Al. I. Cuza University, 700506, Iaşi, Romania

Received  April 2013 Revised  July 2013 Published  August 2014

In this paper we study the spatial behavior of the amplitude of the steady-state vibrations in a thermoviscoelastic porous beam. Here we take into account the effects of the viscoelastic and thermal dissipation energies upon the corresponding harmonic vibrations in a right cylinder made of a thermoviscoelastic porous isotropic material. In fact, we prove that the positiveness of the viscoelastic and thermal dissipation energies are sufficient for characterizing the spatial decay and growth properties of the harmonic vibrations in a cylinder.
Citation: Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027
References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder,, Journal of Thermal Stresses, 18 (1995), 421.  doi: 10.1080/01495739508946311.  Google Scholar

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids,, Journal of Thermal Stresses, 24 (2001), 433.  doi: 10.1080/01495730151126096.  Google Scholar

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials,, Journal of Elasticity, 93 (2008), 81.  doi: 10.1007/s10659-008-9167-z.  Google Scholar

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region,, Mathematical Methods in the Applied Sciences, 33 (2010), 1743.  doi: 10.1002/mma.1294.  Google Scholar

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids,, Proceedings of the Royal Society A, 466 (2010), 439.   Google Scholar

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids,, Journal of Elasticity, 32 (1993), 1.  doi: 10.1007/BF00042245.  Google Scholar

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids,, Journal of Mathematical Analysis and Applications, 333 (2007), 142.  doi: 10.1016/j.jmaa.2006.09.014.  Google Scholar

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids,, European Journal of Mechanics - A/Solids, 28 (2009), 897.  doi: 10.1016/j.euromechsol.2009.03.008.  Google Scholar

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids,, Journal of Elasticity, 13 (1983), 125.   Google Scholar

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate,, Quarterly of Applied Mathematics, 61 (2003), 783.   Google Scholar

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain,, Journal of Mathematical Analysis and Applications, 363 (2010), 454.  doi: 10.1016/j.jmaa.2009.09.032.  Google Scholar

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics,, Journal of Elasticity, 17 (1987), 249.  doi: 10.1007/BF00049455.  Google Scholar

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates,, International Journal of Solids and Structures, 48 (2011), 243.   Google Scholar

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity,, Quarterly of Applied Mathematics, 67 (2009), 707.   Google Scholar

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids,, Journal of Elasticity, 15 (1985), 215.  doi: 10.1007/BF00041994.  Google Scholar

[16]

D. Ieşan, A theory of thermoelastic material with voids,, Acta Mechanica, 60 (1986), 67.   Google Scholar

[17]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic, (2004).  doi: 10.1007/978-1-4020-2310-1.  Google Scholar

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids,, Journal of Elasticity, 104 (2011), 369.  doi: 10.1007/s10659-010-9300-7.  Google Scholar

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids,, Meccanica, 39 (2004), 125.  doi: 10.1023/B:MECC.0000005118.15612.01.  Google Scholar

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids,, Journal of Thermal Stresses, 27 (2004), 209.  doi: 10.1080/01495730490264330.  Google Scholar

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,, Journal of Thermal Stresses, 36 (2013), 94.  doi: 10.1080/01495739.2012.720545.  Google Scholar

[22]

B. Straughan, Stability and Wave Motion in Porous Media,, Series in applied mathematical sciences, (2008).   Google Scholar

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids,, Journal of Vibration and Control, 20 (2014), 1119.  doi: 10.1177/1077546312470479.  Google Scholar

show all references

References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder,, Journal of Thermal Stresses, 18 (1995), 421.  doi: 10.1080/01495739508946311.  Google Scholar

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids,, Journal of Thermal Stresses, 24 (2001), 433.  doi: 10.1080/01495730151126096.  Google Scholar

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials,, Journal of Elasticity, 93 (2008), 81.  doi: 10.1007/s10659-008-9167-z.  Google Scholar

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region,, Mathematical Methods in the Applied Sciences, 33 (2010), 1743.  doi: 10.1002/mma.1294.  Google Scholar

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids,, Proceedings of the Royal Society A, 466 (2010), 439.   Google Scholar

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids,, Journal of Elasticity, 32 (1993), 1.  doi: 10.1007/BF00042245.  Google Scholar

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids,, Journal of Mathematical Analysis and Applications, 333 (2007), 142.  doi: 10.1016/j.jmaa.2006.09.014.  Google Scholar

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids,, European Journal of Mechanics - A/Solids, 28 (2009), 897.  doi: 10.1016/j.euromechsol.2009.03.008.  Google Scholar

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids,, Journal of Elasticity, 13 (1983), 125.   Google Scholar

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate,, Quarterly of Applied Mathematics, 61 (2003), 783.   Google Scholar

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain,, Journal of Mathematical Analysis and Applications, 363 (2010), 454.  doi: 10.1016/j.jmaa.2009.09.032.  Google Scholar

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics,, Journal of Elasticity, 17 (1987), 249.  doi: 10.1007/BF00049455.  Google Scholar

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates,, International Journal of Solids and Structures, 48 (2011), 243.   Google Scholar

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity,, Quarterly of Applied Mathematics, 67 (2009), 707.   Google Scholar

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids,, Journal of Elasticity, 15 (1985), 215.  doi: 10.1007/BF00041994.  Google Scholar

[16]

D. Ieşan, A theory of thermoelastic material with voids,, Acta Mechanica, 60 (1986), 67.   Google Scholar

[17]

D. Ieşan, Thermoelastic Models of Continua,, Kluwer Academic, (2004).  doi: 10.1007/978-1-4020-2310-1.  Google Scholar

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids,, Journal of Elasticity, 104 (2011), 369.  doi: 10.1007/s10659-010-9300-7.  Google Scholar

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids,, Meccanica, 39 (2004), 125.  doi: 10.1023/B:MECC.0000005118.15612.01.  Google Scholar

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids,, Journal of Thermal Stresses, 27 (2004), 209.  doi: 10.1080/01495730490264330.  Google Scholar

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,, Journal of Thermal Stresses, 36 (2013), 94.  doi: 10.1080/01495739.2012.720545.  Google Scholar

[22]

B. Straughan, Stability and Wave Motion in Porous Media,, Series in applied mathematical sciences, (2008).   Google Scholar

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids,, Journal of Vibration and Control, 20 (2014), 1119.  doi: 10.1177/1077546312470479.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[2]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[3]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[4]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]