September  2014, 19(7): 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

Spatial behavior in the vibrating thermoviscoelastic porous materials

1. 

Department of Mathematics, Al. I. Cuza University, 700506, Iaşi, Romania

Received  April 2013 Revised  July 2013 Published  August 2014

In this paper we study the spatial behavior of the amplitude of the steady-state vibrations in a thermoviscoelastic porous beam. Here we take into account the effects of the viscoelastic and thermal dissipation energies upon the corresponding harmonic vibrations in a right cylinder made of a thermoviscoelastic porous isotropic material. In fact, we prove that the positiveness of the viscoelastic and thermal dissipation energies are sufficient for characterizing the spatial decay and growth properties of the harmonic vibrations in a cylinder.
Citation: Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027
References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder, Journal of Thermal Stresses, 18 (1995), 421-436. doi: 10.1080/01495739508946311.

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids, Journal of Thermal Stresses, 24 (2001), 433-455. doi: 10.1080/01495730151126096.

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials, Journal of Elasticity, 93 (2008), 81-92. doi: 10.1007/s10659-008-9167-z.

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region, Mathematical Methods in the Applied Sciences, 33 (2010), 1743-1754. doi: 10.1002/mma.1294.

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids, Proceedings of the Royal Society A, 466 (2010), 439-458.

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids, Journal of Elasticity, 32 (1993), 1-17. doi: 10.1007/BF00042245.

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids, Journal of Mathematical Analysis and Applications, 333 (2007), 142-150. doi: 10.1016/j.jmaa.2006.09.014.

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids, European Journal of Mechanics - A/Solids, 28 (2009), 897-903. doi: 10.1016/j.euromechsol.2009.03.008.

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids, Journal of Elasticity, 13 (1983), 125-147.

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate, Quarterly of Applied Mathematics, 61 (2003), 783-796.

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain, Journal of Mathematical Analysis and Applications, 363 (2010), 454-467. doi: 10.1016/j.jmaa.2009.09.032.

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics, Journal of Elasticity, 17 (1987), 249-264. doi: 10.1007/BF00049455.

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates, International Journal of Solids and Structures, 48 (2011), 243-248.

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity, Quarterly of Applied Mathematics, 67 (2009), 707-723.

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids, Journal of Elasticity, 15 (1985), 215-224. doi: 10.1007/BF00041994.

[16]

D. Ieşan, A theory of thermoelastic material with voids, Acta Mechanica, 60 (1986), 67-89.

[17]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids, Journal of Elasticity, 104 (2011), 369-384. doi: 10.1007/s10659-010-9300-7.

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids, Meccanica, 39 (2004), 125-138. doi: 10.1023/B:MECC.0000005118.15612.01.

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids, Journal of Thermal Stresses, 27 (2004), 209-226. doi: 10.1080/01495730490264330.

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids, Journal of Thermal Stresses, 36 (2013), 94-111. doi: 10.1080/01495739.2012.720545.

[22]

B. Straughan, Stability and Wave Motion in Porous Media, Series in applied mathematical sciences, 165, Springer-Verlag, Berlin-Heidelberg-New York, 2008.

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids, Journal of Vibration and Control, 20 (2014), 1119-1136. doi: 10.1177/1077546312470479.

show all references

References:
[1]

S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder, Journal of Thermal Stresses, 18 (1995), 421-436. doi: 10.1080/01495739508946311.

[2]

S. Chiriţă and A. Scalia, On the spatial and temporal behaviour in linear thermoelasticity of materials with voids, Journal of Thermal Stresses, 24 (2001), 433-455. doi: 10.1080/01495730151126096.

[3]

S. Chiriţă, C. Galeş and I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin-Voigt materials, Journal of Elasticity, 93 (2008), 81-92. doi: 10.1007/s10659-008-9167-z.

[4]

S. Chiriţă and C. D'Apice, On Saint-Venant's principle in a poroelastic arch-like region, Mathematical Methods in the Applied Sciences, 33 (2010), 1743-1754. doi: 10.1002/mma.1294.

[5]

S. Chiriţă and I. D. Ghiba, Strong ellipticity and progressive waves in elastic materials with voids, Proceedings of the Royal Society A, 466 (2010), 439-458.

[6]

M. Ciarletta and A. Scalia, On uniqueness and reciprocity in linear thermoelasticity of materials with voids, Journal of Elasticity, 32 (1993), 1-17. doi: 10.1007/BF00042245.

[7]

M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids, Journal of Mathematical Analysis and Applications, 333 (2007), 142-150. doi: 10.1016/j.jmaa.2006.09.014.

[8]

M. Ciarletta, M. Svanadze and L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids, European Journal of Mechanics - A/Solids, 28 (2009), 897-903. doi: 10.1016/j.euromechsol.2009.03.008.

[9]

S. C. Cowin and J. W. Nunziato, Linear theory of elastic materials with voids, Journal of Elasticity, 13 (1983), 125-147.

[10]

C. D'Apice and S. Chiriţă, Spatial behaviour in a Mindlin-type thermoelastic plate, Quarterly of Applied Mathematics, 61 (2003), 783-796.

[11]

C. D'Apice and S. Chiriţă, On Saint-Venant's principle for a linear poroelastic material in plane strain, Journal of Mathematical Analysis and Applications, 363 (2010), 454-467. doi: 10.1016/j.jmaa.2009.09.032.

[12]

J. N. Flavin and R. J. Knops, Some spatial decay estimates in continuum dynamics, Journal of Elasticity, 17 (1987), 249-264. doi: 10.1007/BF00049455.

[13]

C. Galeş, On spatial behavior of harmonic vibrations in viscoelastic Reissner-Mindlin plates, International Journal of Solids and Structures, 48 (2011), 243-248.

[14]

C. Galeş and S. Chiriţă, On spatial behavior in linear viscoelasticity, Quarterly of Applied Mathematics, 67 (2009), 707-723.

[15]

D. Ieşan, Some theorems in the theory of elastic materials with voids, Journal of Elasticity, 15 (1985), 215-224. doi: 10.1007/BF00041994.

[16]

D. Ieşan, A theory of thermoelastic material with voids, Acta Mechanica, 60 (1986), 67-89.

[17]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[18]

D. Ieşan, On a theory of thermoviscoelastic materials with voids, Journal of Elasticity, 104 (2011), 369-384. doi: 10.1007/s10659-010-9300-7.

[19]

D. Ieşan and L. Nappa, Thermal stresses in plane strain of porous elastic solids, Meccanica, 39 (2004), 125-138. doi: 10.1023/B:MECC.0000005118.15612.01.

[20]

A. Scalia, A. Pompei and S. Chiriţă, On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids, Journal of Thermal Stresses, 27 (2004), 209-226. doi: 10.1080/01495730490264330.

[21]

K. Sharma and P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids, Journal of Thermal Stresses, 36 (2013), 94-111. doi: 10.1080/01495739.2012.720545.

[22]

B. Straughan, Stability and Wave Motion in Porous Media, Series in applied mathematical sciences, 165, Springer-Verlag, Berlin-Heidelberg-New York, 2008.

[23]

S. K. Tomar, J. Bhagwan and H. Steeb, Time harmonic waves in thermo-viscoelastic material with voids, Journal of Vibration and Control, 20 (2014), 1119-1136. doi: 10.1177/1077546312470479.

[1]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[2]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[3]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[4]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure and Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[5]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[6]

Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078

[7]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[8]

Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775

[9]

Li Ma, Youquan Luo. Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2555-2582. doi: 10.3934/dcdsb.2020022

[10]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[11]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[12]

Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021286

[13]

Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial and Management Optimization, 2022, 18 (1) : 25-44. doi: 10.3934/jimo.2020141

[14]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[15]

J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003

[16]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[17]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[18]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[19]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[20]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]