September  2014, 19(7): 2039-2045. doi: 10.3934/dcdsb.2014.19.2039

Asymptotic effects of boundary perturbations in excitable systems

1. 

University of Naples Federico II, Via Claudio, 21, Naples, 80121, Italy, Italy

Received  April 2013 Revised  March 2014 Published  August 2014

A Neumann problem in the strip for the Fitzhugh Nagumo system is considered. The transformation in a non linear integral equation permits to deduce a priori estimates for the solution. A complete asymptotic analysis shows that for large $ t $ the effects of the initial data vanish while the effects of boundary disturbances $ \varphi_1 (t), $ $ \varphi_2(t) $ depend on the properties of the data. When $ \varphi_1,\,\, \varphi_2 $ are convergent for large $ t $, the solution is everywhere bounded and depends on the asymptotic values of $ \varphi_1 , $ $ \varphi_2 $. More, when $ \varphi_i \in L^1 (0,\infty) (i=1,2)$ too, the effects are vanishing.
Citation: Monica De Angelis, Pasquale Renno. Asymptotic effects of boundary perturbations in excitable systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2039-2045. doi: 10.3934/dcdsb.2014.19.2039
References:
[1]

L. Berg, Introduction to the Operational Calculus,, North Holland Publ. Comp., (1967).   Google Scholar

[2]

B. Buonomo A. d Onofrio and D.Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases,, J. Math. Anal. Appl., 404 (2013), 385.  doi: 10.1016/j.jmaa.2013.02.063.  Google Scholar

[3]

J. R. Cannon, The One-Dimensional Heat Equation,, Addison-Wesley Publishing Company, (1984).  doi: 10.1017/CBO9781139086967.  Google Scholar

[4]

F. Capone, V. De Cataldis and R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model,, Ricerche di Matematica, 62 (2013), 161.  doi: 10.1007/s11587-013-0151-y.  Google Scholar

[5]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta. Appl. Math., 122 (2012), 255.  doi: 10.1007/s10440-012-9741-z.  Google Scholar

[6]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[7]

M. De Angelis, A priori estimates for excitable models,, Meccanica, 48 (2013), 2491.  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[8]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta. Appl. Math., 122 (2012), 179.  doi: 10.1007/s10440-012-9736-9.  Google Scholar

[9]

M. De Angelis, Asymptotic estimates related to an integro differential equation,, Nonlinear Dynamics and Systems Theory, 13 (2013), 217.   Google Scholar

[10]

M. D. Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[11]

M. De Angelis and G. Fiore, Diffusion effects in a superconductive model,, Communications on Pure and Applied Analysis, 13 (2014), 217.  doi: 10.3934/cpaa.2014.13.217.  Google Scholar

[12]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in Mathematical Physics Models and Engineering Sciences (eds. Liguori, (2008), 191.   Google Scholar

[13]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric. Mat., 57 (2008), 95.  doi: 10.1007/s11587-008-0028-7.  Google Scholar

[14]

M. De Angelis and P. Renno, On the FitzHugh-Nagumo model,, in WASCOM 2007 4th Conference on Waves and Stability in Continuous Media, (2007), 193.  doi: 10.1142/9789812772350_0029.  Google Scholar

[15]

M. De Angelis and P. Renno, On asymptotic effects of boundary perturbations in exponentially shaped Josephson junction,, Acta Appl. Math., (2014), 10440.   Google Scholar

[16]

J. P. Keener and J. Sneyd, Mathematical Physiology,, Springer-Verlag, (1998).   Google Scholar

[17]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, The MIT press. England, (2007).   Google Scholar

[18]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geiere, Effects of noise in excitable systems,, Physics Reports, 392 (2004), 321.  doi: 10.1016/j.physrep.2003.10.015.  Google Scholar

[19]

J. D. Murray, Mathematical Biology,, I, (2002).   Google Scholar

[20]

O. Nekhamkina and M. Sheintuch, Boundary-induced spatiotemporal complex patterns in excitable systems,, Phys. Rev., E73 (2006), 66224.  doi: 10.1103/PhysRevE.73.066224.  Google Scholar

[21]

S. Rionero, On the stability of nonautonomous binary dynamical systems of partial differential equations,, Att. Acc. Pelor. Per. (AAPP), 91 (2013).   Google Scholar

[22]

Alwyn C. Scott, The Nonlinear Universe: Chaos, Emergence, Life,, Springer-Verlag New York, (2007).   Google Scholar

[23]

Alwyn C. Scott, Neuroscience A Mathematical Primer,, Springer-Verlag New York, (2002).   Google Scholar

[24]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, 2nd edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

Torcicollo I., On the Dynamics of the nonlinear duopoly game,, International Journal of Non-Linear Mechanics, 57 (2013), 31.   Google Scholar

show all references

References:
[1]

L. Berg, Introduction to the Operational Calculus,, North Holland Publ. Comp., (1967).   Google Scholar

[2]

B. Buonomo A. d Onofrio and D.Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases,, J. Math. Anal. Appl., 404 (2013), 385.  doi: 10.1016/j.jmaa.2013.02.063.  Google Scholar

[3]

J. R. Cannon, The One-Dimensional Heat Equation,, Addison-Wesley Publishing Company, (1984).  doi: 10.1017/CBO9781139086967.  Google Scholar

[4]

F. Capone, V. De Cataldis and R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model,, Ricerche di Matematica, 62 (2013), 161.  doi: 10.1007/s11587-013-0151-y.  Google Scholar

[5]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta. Appl. Math., 122 (2012), 255.  doi: 10.1007/s10440-012-9741-z.  Google Scholar

[6]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[7]

M. De Angelis, A priori estimates for excitable models,, Meccanica, 48 (2013), 2491.  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[8]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta. Appl. Math., 122 (2012), 179.  doi: 10.1007/s10440-012-9736-9.  Google Scholar

[9]

M. De Angelis, Asymptotic estimates related to an integro differential equation,, Nonlinear Dynamics and Systems Theory, 13 (2013), 217.   Google Scholar

[10]

M. D. Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[11]

M. De Angelis and G. Fiore, Diffusion effects in a superconductive model,, Communications on Pure and Applied Analysis, 13 (2014), 217.  doi: 10.3934/cpaa.2014.13.217.  Google Scholar

[12]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in Mathematical Physics Models and Engineering Sciences (eds. Liguori, (2008), 191.   Google Scholar

[13]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric. Mat., 57 (2008), 95.  doi: 10.1007/s11587-008-0028-7.  Google Scholar

[14]

M. De Angelis and P. Renno, On the FitzHugh-Nagumo model,, in WASCOM 2007 4th Conference on Waves and Stability in Continuous Media, (2007), 193.  doi: 10.1142/9789812772350_0029.  Google Scholar

[15]

M. De Angelis and P. Renno, On asymptotic effects of boundary perturbations in exponentially shaped Josephson junction,, Acta Appl. Math., (2014), 10440.   Google Scholar

[16]

J. P. Keener and J. Sneyd, Mathematical Physiology,, Springer-Verlag, (1998).   Google Scholar

[17]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, The MIT press. England, (2007).   Google Scholar

[18]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geiere, Effects of noise in excitable systems,, Physics Reports, 392 (2004), 321.  doi: 10.1016/j.physrep.2003.10.015.  Google Scholar

[19]

J. D. Murray, Mathematical Biology,, I, (2002).   Google Scholar

[20]

O. Nekhamkina and M. Sheintuch, Boundary-induced spatiotemporal complex patterns in excitable systems,, Phys. Rev., E73 (2006), 66224.  doi: 10.1103/PhysRevE.73.066224.  Google Scholar

[21]

S. Rionero, On the stability of nonautonomous binary dynamical systems of partial differential equations,, Att. Acc. Pelor. Per. (AAPP), 91 (2013).   Google Scholar

[22]

Alwyn C. Scott, The Nonlinear Universe: Chaos, Emergence, Life,, Springer-Verlag New York, (2007).   Google Scholar

[23]

Alwyn C. Scott, Neuroscience A Mathematical Primer,, Springer-Verlag New York, (2002).   Google Scholar

[24]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, 2nd edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

Torcicollo I., On the Dynamics of the nonlinear duopoly game,, International Journal of Non-Linear Mechanics, 57 (2013), 31.   Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]