-
Previous Article
Singular parabolic problems with possibly changing sign data
- DCDS-B Home
- This Issue
-
Next Article
Spatial behavior in the vibrating thermoviscoelastic porous materials
Asymptotic effects of boundary perturbations in excitable systems
1. | University of Naples Federico II, Via Claudio, 21, Naples, 80121, Italy, Italy |
References:
[1] |
L. Berg, Introduction to the Operational Calculus, North Holland Publ. Comp., 1967. |
[2] |
B. Buonomo A. d Onofrio and D.Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404 (2013), 385-398.
doi: 10.1016/j.jmaa.2013.02.063. |
[3] |
J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley Publishing Company, 1984.
doi: 10.1017/CBO9781139086967. |
[4] |
F. Capone, V. De Cataldis and R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model, Ricerche di Matematica, 62 (2013), 161-181.
doi: 10.1007/s11587-013-0151-y. |
[5] |
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta. Appl. Math., 122 (2012), 255-267.
doi: 10.1007/s10440-012-9741-z. |
[6] |
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 41-50. |
[7] |
M. De Angelis, A priori estimates for excitable models, Meccanica, 48 (2013), 2491-2496.
doi: 10.1007/s11012-013-9763-2. |
[8] |
M. De Angelis, On exponentially shaped Josephson junctions, Acta. Appl. Math., 122 (2012), 179-189.
doi: 10.1007/s10440-012-9736-9. |
[9] |
M. De Angelis, Asymptotic estimates related to an integro differential equation, Nonlinear Dynamics and Systems Theory, 13 (2013), 217-228. |
[10] |
M. D. Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477-490.
doi: 10.1016/j.jmaa.2013.03.029. |
[11] |
M. De Angelis and G. Fiore, Diffusion effects in a superconductive model, Communications on Pure and Applied Analysis, 13 (2014), 217-223.
doi: 10.3934/cpaa.2014.13.217. |
[12] |
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in Mathematical Physics Models and Engineering Sciences (eds. Liguori, Italy), 2008, 191-202. |
[13] |
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation, Ric. Mat., 57 (2008), 95-109.
doi: 10.1007/s11587-008-0028-7. |
[14] |
M. De Angelis and P. Renno, On the FitzHugh-Nagumo model, in WASCOM 2007 4th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ, 2008, 193-198,
doi: 10.1142/9789812772350_0029. |
[15] |
M. De Angelis and P. Renno, On asymptotic effects of boundary perturbations in exponentially shaped Josephson junction, Acta Appl. Math.,DOI 10.1007/s10440-014-9898-8, 2014. |
[16] |
J. P. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, N.Y, 1998. |
[17] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT press. England, 2007. |
[18] |
B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geiere, Effects of noise in excitable systems, Physics Reports, 392 (2004), 321-424.
doi: 10.1016/j.physrep.2003.10.015. |
[19] |
J. D. Murray, Mathematical Biology, I, II, Springer-Verlag, N.Y. 2002. |
[20] |
O. Nekhamkina and M. Sheintuch, Boundary-induced spatiotemporal complex patterns in excitable systems, Phys. Rev., E73 (2006), 66224-66228.
doi: 10.1103/PhysRevE.73.066224. |
[21] |
S. Rionero, On the stability of nonautonomous binary dynamical systems of partial differential equations, Att. Acc. Pelor. Per. (AAPP), 91 (2013). |
[22] |
Alwyn C. Scott, The Nonlinear Universe: Chaos, Emergence, Life, Springer-Verlag New York, 2007, |
[23] |
Alwyn C. Scott, Neuroscience A Mathematical Primer, Springer-Verlag New York, 2002. |
[24] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[25] |
Torcicollo I., On the Dynamics of the nonlinear duopoly game, International Journal of Non-Linear Mechanics, 57 (2013), 31-38. |
show all references
References:
[1] |
L. Berg, Introduction to the Operational Calculus, North Holland Publ. Comp., 1967. |
[2] |
B. Buonomo A. d Onofrio and D.Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404 (2013), 385-398.
doi: 10.1016/j.jmaa.2013.02.063. |
[3] |
J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley Publishing Company, 1984.
doi: 10.1017/CBO9781139086967. |
[4] |
F. Capone, V. De Cataldis and R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model, Ricerche di Matematica, 62 (2013), 161-181.
doi: 10.1007/s11587-013-0151-y. |
[5] |
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta. Appl. Math., 122 (2012), 255-267.
doi: 10.1007/s10440-012-9741-z. |
[6] |
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 41-50. |
[7] |
M. De Angelis, A priori estimates for excitable models, Meccanica, 48 (2013), 2491-2496.
doi: 10.1007/s11012-013-9763-2. |
[8] |
M. De Angelis, On exponentially shaped Josephson junctions, Acta. Appl. Math., 122 (2012), 179-189.
doi: 10.1007/s10440-012-9736-9. |
[9] |
M. De Angelis, Asymptotic estimates related to an integro differential equation, Nonlinear Dynamics and Systems Theory, 13 (2013), 217-228. |
[10] |
M. D. Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477-490.
doi: 10.1016/j.jmaa.2013.03.029. |
[11] |
M. De Angelis and G. Fiore, Diffusion effects in a superconductive model, Communications on Pure and Applied Analysis, 13 (2014), 217-223.
doi: 10.3934/cpaa.2014.13.217. |
[12] |
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in Mathematical Physics Models and Engineering Sciences (eds. Liguori, Italy), 2008, 191-202. |
[13] |
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation, Ric. Mat., 57 (2008), 95-109.
doi: 10.1007/s11587-008-0028-7. |
[14] |
M. De Angelis and P. Renno, On the FitzHugh-Nagumo model, in WASCOM 2007 4th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ, 2008, 193-198,
doi: 10.1142/9789812772350_0029. |
[15] |
M. De Angelis and P. Renno, On asymptotic effects of boundary perturbations in exponentially shaped Josephson junction, Acta Appl. Math.,DOI 10.1007/s10440-014-9898-8, 2014. |
[16] |
J. P. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, N.Y, 1998. |
[17] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT press. England, 2007. |
[18] |
B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geiere, Effects of noise in excitable systems, Physics Reports, 392 (2004), 321-424.
doi: 10.1016/j.physrep.2003.10.015. |
[19] |
J. D. Murray, Mathematical Biology, I, II, Springer-Verlag, N.Y. 2002. |
[20] |
O. Nekhamkina and M. Sheintuch, Boundary-induced spatiotemporal complex patterns in excitable systems, Phys. Rev., E73 (2006), 66224-66228.
doi: 10.1103/PhysRevE.73.066224. |
[21] |
S. Rionero, On the stability of nonautonomous binary dynamical systems of partial differential equations, Att. Acc. Pelor. Per. (AAPP), 91 (2013). |
[22] |
Alwyn C. Scott, The Nonlinear Universe: Chaos, Emergence, Life, Springer-Verlag New York, 2007, |
[23] |
Alwyn C. Scott, Neuroscience A Mathematical Primer, Springer-Verlag New York, 2002. |
[24] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[25] |
Torcicollo I., On the Dynamics of the nonlinear duopoly game, International Journal of Non-Linear Mechanics, 57 (2013), 31-38. |
[1] |
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106 |
[2] |
Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 |
[3] |
Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022042 |
[4] |
José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 |
[5] |
Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 |
[6] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[7] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[8] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[9] |
Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516 |
[10] |
Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3249-3266. doi: 10.3934/dcdss.2020341 |
[11] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[12] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[13] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[14] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[15] |
Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587 |
[16] |
Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191 |
[17] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[18] |
Aníbal Rodríguez-Bernal, Silvia Sastre-Gómez. Nonlinear nonlocal reaction-diffusion problem with local reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1731-1765. doi: 10.3934/dcds.2021170 |
[19] |
Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 |
[20] |
Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]