-
Previous Article
The state of fractional hereditary materials (FHM)
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic effects of boundary perturbations in excitable systems
Singular parabolic problems with possibly changing sign data
1. | Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza, Università di Roma, Via Scarpa 16, 00161 Roma, Italy |
2. | Dip. Metodi e Modelli Matematici per le Scienze Applicate, Univ. Roma 1, Via Antonio Scarpa 16, 00161 Roma |
We refer to the model problem $$\left\{ \begin{array}{ll} u_t - \Delta u = b(x,t) \frac{|\nabla u|^2}{|u|^k} + f(x,t) & in \Omega \times (0,T)\\ u(x,t) = 0 & on \partial\Omega\times(0,T)\\ u(x,0) = u_0 (x) &
  in \Omega \end{array}\right. $$ where $\Omega$ is a bounded open subset of $\mathbb{R}^N, N \geq 2, 0 < T < + \infty$ and $0 < k < 1$. The data $f(x,t), u_0(x)$ can change their sign, so that the possible solution $u$ can vanish inside $Q_T=\Omega\times(0,T)$ even in a set of positive measure. Therefore, we have to carefully define the meaning of solution. Also $b(x,t)$ can have a quite general sign.
References:
[1] |
B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary, Nonlinear Analysis, 74 (2011), 1355-1371.
doi: 10.1016/j.na.2010.10.008. |
[2] |
D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Differential Equations, 249 (2010), 2771-2795.
doi: 10.1016/j.jde.2010.05.009. |
[3] |
D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[4] |
D. Arcoya and S. Segura de Léon, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM: Control, Optimization and the Calculus of Variations, 16 (2010), 327-336.
doi: 10.1051/cocv:2008072. |
[5] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[6] |
A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. I. H. Poincaré, 23 (2006), 97-126.
doi: 10.1016/j.anihpc.2005.02.006. |
[7] |
D. Giachetti and G. Maroscia, Existence results for a class of porous medium type equations with quadratic gradient term, Journal of Evolution Equations, 8 (2008), 155-188.
doi: 10.1007/s00028-007-0362-3. |
[8] |
D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior, Boll. Unione Mat. Ital., 9 (2009), 349-370. |
[9] |
D. Giachetti, F. Petitta and S. Segura De Léon, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Communications on Pure and Applied Analysis, 11 (2012), 1875-1895.
doi: 10.3934/cpaa.2012.11.1875. |
[10] |
D. Giachetti, S. Segura De Léon and F. Petitta, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Differential Integral Equations, 26 (2013), 913-948. |
[11] |
O. A. Ladyzenskaja, V. A. Solonnikov and N .N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Math. Monographs, Providence, 1968. |
[12] |
R. Landes and V. Mustonen, On Parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135-158. |
[13] |
P. J. Martínez-Aparicio and F. Petitta, Parabolic equations with nonlinear singularities, Nonlinear Analysis, 74 (2011), 114-131.
doi: 10.1016/j.na.2010.08.023. |
[14] |
J. Simon, Compact sets in the space $L^p(0, T, B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
show all references
References:
[1] |
B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary, Nonlinear Analysis, 74 (2011), 1355-1371.
doi: 10.1016/j.na.2010.10.008. |
[2] |
D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Differential Equations, 249 (2010), 2771-2795.
doi: 10.1016/j.jde.2010.05.009. |
[3] |
D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[4] |
D. Arcoya and S. Segura de Léon, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM: Control, Optimization and the Calculus of Variations, 16 (2010), 327-336.
doi: 10.1051/cocv:2008072. |
[5] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[6] |
A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. I. H. Poincaré, 23 (2006), 97-126.
doi: 10.1016/j.anihpc.2005.02.006. |
[7] |
D. Giachetti and G. Maroscia, Existence results for a class of porous medium type equations with quadratic gradient term, Journal of Evolution Equations, 8 (2008), 155-188.
doi: 10.1007/s00028-007-0362-3. |
[8] |
D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior, Boll. Unione Mat. Ital., 9 (2009), 349-370. |
[9] |
D. Giachetti, F. Petitta and S. Segura De Léon, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Communications on Pure and Applied Analysis, 11 (2012), 1875-1895.
doi: 10.3934/cpaa.2012.11.1875. |
[10] |
D. Giachetti, S. Segura De Léon and F. Petitta, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Differential Integral Equations, 26 (2013), 913-948. |
[11] |
O. A. Ladyzenskaja, V. A. Solonnikov and N .N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Math. Monographs, Providence, 1968. |
[12] |
R. Landes and V. Mustonen, On Parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135-158. |
[13] |
P. J. Martínez-Aparicio and F. Petitta, Parabolic equations with nonlinear singularities, Nonlinear Analysis, 74 (2011), 114-131.
doi: 10.1016/j.na.2010.08.023. |
[14] |
J. Simon, Compact sets in the space $L^p(0, T, B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[1] |
Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989 |
[2] |
Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure and Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163 |
[3] |
Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure and Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929 |
[4] |
N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119 |
[5] |
Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164 |
[6] |
Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure and Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587 |
[7] |
Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012 |
[8] |
Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 |
[9] |
J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136 |
[10] |
Byungsoo Kang, Hyunseok Kim. W1, p-estimates for elliptic equations with lower order terms. Communications on Pure and Applied Analysis, 2017, 16 (3) : 799-822. doi: 10.3934/cpaa.2017038 |
[11] |
Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89 |
[12] |
Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure and Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923 |
[13] |
S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305 |
[14] |
Mounim El Ouardy, Youssef El Hadfi, Aziz Ifzarne. Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 117-141. doi: 10.3934/dcdss.2021012 |
[15] |
Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541 |
[16] |
C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure and Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589 |
[17] |
Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909 |
[18] |
Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005 |
[19] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[20] |
Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]