September  2014, 19(7): 2047-2064. doi: 10.3934/dcdsb.2014.19.2047

Singular parabolic problems with possibly changing sign data

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza, Università di Roma, Via Scarpa 16, 00161 Roma, Italy

2. 

Dip. Metodi e Modelli Matematici per le Scienze Applicate, Univ. Roma 1, Via Antonio Scarpa 16, 00161 Roma

Received  April 2013 Revised  September 2013 Published  August 2014

We show the existence of bounded solutions $u\in L^2(0,T;H^1_0(\Omega))$ for a class of parabolic equations having a lower order term $b(x,t,u,\nabla u)$ growing quadratically in the $\nabla u$-variable and singular in the $u$-variable on the set $\{u=0\}$.
    We refer to the model problem $$\left\{ \begin{array}{ll} u_t - \Delta u = b(x,t) \frac{|\nabla u|^2}{|u|^k} + f(x,t) &     in \Omega \times (0,T)\\ u(x,t) = 0 &     on \partial\Omega\times(0,T)\\ u(x,0) = u_0 (x)   &
    in \Omega \end{array}\right. $$ where $\Omega$ is a bounded open subset of $\mathbb{R}^N, N \geq 2, 0 < T < + \infty$ and $0 < k < 1$. The data $f(x,t), u_0(x)$ can change their sign, so that the possible solution $u$ can vanish inside $Q_T=\Omega\times(0,T)$ even in a set of positive measure. Therefore, we have to carefully define the meaning of solution. Also $b(x,t)$ can have a quite general sign.
Citation: Ida De Bonis, Daniela Giachetti. Singular parabolic problems with possibly changing sign data. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2047-2064. doi: 10.3934/dcdsb.2014.19.2047
References:
[1]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355.  doi: 10.1016/j.na.2010.10.008.  Google Scholar

[2]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J. Differential Equations, 249 (2010), 2771.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar

[3]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[4]

D. Arcoya and S. Segura de Léon, Uniqueness of solutions for some elliptic equations with a quadratic gradient term,, ESAIM: Control, 16 (2010), 327.  doi: 10.1051/cocv:2008072.  Google Scholar

[5]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[6]

A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term,, Ann. I. H. Poincaré, 23 (2006), 97.  doi: 10.1016/j.anihpc.2005.02.006.  Google Scholar

[7]

D. Giachetti and G. Maroscia, Existence results for a class of porous medium type equations with quadratic gradient term,, Journal of Evolution Equations, 8 (2008), 155.  doi: 10.1007/s00028-007-0362-3.  Google Scholar

[8]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior,, Boll. Unione Mat. Ital., 9 (2009), 349.   Google Scholar

[9]

D. Giachetti, F. Petitta and S. Segura De Léon, Elliptic equations having a singular quadratic gradient term and a changing sign datum,, Communications on Pure and Applied Analysis, 11 (2012), 1875.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar

[10]

D. Giachetti, S. Segura De Léon and F. Petitta, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum,, Differential Integral Equations, 26 (2013), 913.   Google Scholar

[11]

O. A. Ladyzenskaja, V. A. Solonnikov and N .N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Math. Monographs, (1968).   Google Scholar

[12]

R. Landes and V. Mustonen, On Parabolic initial-boundary value problems with critical growth for the gradient,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135.   Google Scholar

[13]

P. J. Martínez-Aparicio and F. Petitta, Parabolic equations with nonlinear singularities,, Nonlinear Analysis, 74 (2011), 114.  doi: 10.1016/j.na.2010.08.023.  Google Scholar

[14]

J. Simon, Compact sets in the space $L^p(0, T, B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355.  doi: 10.1016/j.na.2010.10.008.  Google Scholar

[2]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J. Differential Equations, 249 (2010), 2771.  doi: 10.1016/j.jde.2010.05.009.  Google Scholar

[3]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[4]

D. Arcoya and S. Segura de Léon, Uniqueness of solutions for some elliptic equations with a quadratic gradient term,, ESAIM: Control, 16 (2010), 327.  doi: 10.1051/cocv:2008072.  Google Scholar

[5]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[6]

A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term,, Ann. I. H. Poincaré, 23 (2006), 97.  doi: 10.1016/j.anihpc.2005.02.006.  Google Scholar

[7]

D. Giachetti and G. Maroscia, Existence results for a class of porous medium type equations with quadratic gradient term,, Journal of Evolution Equations, 8 (2008), 155.  doi: 10.1007/s00028-007-0362-3.  Google Scholar

[8]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior,, Boll. Unione Mat. Ital., 9 (2009), 349.   Google Scholar

[9]

D. Giachetti, F. Petitta and S. Segura De Léon, Elliptic equations having a singular quadratic gradient term and a changing sign datum,, Communications on Pure and Applied Analysis, 11 (2012), 1875.  doi: 10.3934/cpaa.2012.11.1875.  Google Scholar

[10]

D. Giachetti, S. Segura De Léon and F. Petitta, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum,, Differential Integral Equations, 26 (2013), 913.   Google Scholar

[11]

O. A. Ladyzenskaja, V. A. Solonnikov and N .N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Math. Monographs, (1968).   Google Scholar

[12]

R. Landes and V. Mustonen, On Parabolic initial-boundary value problems with critical growth for the gradient,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135.   Google Scholar

[13]

P. J. Martínez-Aparicio and F. Petitta, Parabolic equations with nonlinear singularities,, Nonlinear Analysis, 74 (2011), 114.  doi: 10.1016/j.na.2010.08.023.  Google Scholar

[14]

J. Simon, Compact sets in the space $L^p(0, T, B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]