-
Previous Article
On the Green-Naghdi Type III heat conduction model
- DCDS-B Home
- This Issue
-
Next Article
Fatigue accumulation in a thermo-visco-elastoplastic plate
Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models
1. | Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy, Italy, Italy |
  In the compressible case, we have proved a Hölder continuous dependence theorem upon the initial data and body force for both models, whence follows a result of continuous dependence on the initial data and, therefore, uniqueness.
  For the Johnson-Segalman model we have also dealt with the case of negative elastic viscosities, corresponding to retardation effects. A comparison with other type of viscoelasticity, showing short memory elastic effects, is given.
References:
[1] |
R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol 1. Fluid Mechanics, John Wiley & Sons, New York, 1987. |
[2] |
T. Bodnár and L. Pirkl, A Remark on the Deviatoric Decomposition of Oldroyd Type Models, Colloquium FLUID DYNAMICS 2011, Institute of Thermomechanics AS CR, v.v.i., Prague, October 19 - 21, 2011. Available from: http://www.it.cas.cz/en/colloqium-fluid-dynamics-2011 |
[3] |
R. M. Christensen, Theory of Viscoelasticity, $2^{nd}$ edition, Dover Publications, New York, 2010.
doi: 10.1115/1.3408900. |
[4] |
C. I. Christov, Frame indifferent formulation of Maxwell's elastic-fluid model and the rational continuum mechanics of the electromagnetic field, Mech. Res. Comm., 38 (2011), 334-339.
doi: 10.1016/j.mechrescom.2011.03.002. |
[5] |
M. Fabrizio, Dario graffi in a complex historical period, in Mathematicians in Bologna 1861-1960, (ed. S. Coen), Springer Basel AG, 2012, 179-195.
doi: 10.1007/978-3-0348-0227-7_7. |
[6] |
M. Fabrizio and F. Franchi, Delayed thermal models. Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.
doi: 10.1080/01495739.2013.839619. |
[7] |
F. Franchi, On the behaviour of one-dimensional waves in thermo-viscoelastic fluids, Meccanica, 17 (1982), 3-10.
doi: 10.1007/BF02156001. |
[8] |
R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheo., 16 (1972), 79-97.
doi: 10.1122/1.549256. |
[9] |
D. Graffi, On a method for proving uniqueness theorems in mathematical physics, Atti. Sem. Mat. Fis. Univ. Modena, (Italian) [On a method to prove uniqueness theorems in mathematical physics], 37 (1989), 259-284. |
[10] |
A. Guaily and M. Epstein, A unified hyperbolic model for viscoelastic liquids, Mech. Res. Comm., 37 (2010), 158-163.
doi: 10.1016/j.mechrescom.2009.12.004. |
[11] |
T. Gültop, B. Alyavuz and M. Kopaç, Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids, Mech. Res. Comm., 37 (2010), 153-157. |
[12] |
S. J. Haward, Buckling instabilities in dilute polymer solution elastic strands, Rheol. Acta., 49 (2010), 1219-1225.
doi: 10.1007/s00397-010-0467-4. |
[13] |
T. Hayat, A. Afsar and N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel, Math. Comput. Modelling, 47 (2008), 380-400.
doi: 10.1016/j.mcm.2007.04.012. |
[14] |
T. Hayat, S. Hina and A. A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, J. Mech. Med. Biol., 12 (2012), [22 pages], 1250001.
doi: 10.1142/S0219519412004375. |
[15] |
S. Hinaa, T. Hayat and S. Asghard, Peristaltic transport of Johnson-Segalman fluid in a curved channel with compliant walls, Nonlinear Anal. Model. Control, 17 (2012), 297-311. |
[16] |
D. Hu and T. Leliévre, New entropy estimates for the Oldroyd-B model and related models, Commun. Math. Sci., 5 (2007), 909-916.
doi: 10.4310/CMS.2007.v5.n4.a9. |
[17] |
M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows nonaffine deformation, J. Non-Newtionan Fluid Mech., 4 (1977), 255-270. |
[18] |
D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal., 87 (1985), 213-251.
doi: 10.1007/BF00250725. |
[19] |
R. W. Kolkka, D. S. Malkus, M. G. Hansen and G. R. Ierley, Spurt phenomena of the Johnson-Segalman fluid and related models, J. Non-Newtonian Fluid Mech., 29 (1988), 303-335.
doi: 10.1016/0377-0257(88)85059-6. |
[20] |
H. V. J. Le Meur, Well-posedness of surface wave equations above a viscoelastic fluid, J. Math. Fluid Mech., 13 (2011), 481-514.
doi: 10.1007/s00021-010-0029-7. |
[21] |
V. Y. Liapidevskii, V. V. Pukhnachev and A. Tani, Nonlinear waves in incompressible viscoelastic Maxwell medium, Wave Motion, 48 (2011), 727-737.
doi: 10.1016/j.wavemoti.2011.04.002. |
[22] |
A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105.
doi: 10.1007/s10659-010-9292-3. |
[23] |
C. J. Pipe, N. J. Kim, P. A. Vasquez, L. P. Cook and G. H. McKinley, Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions, Journal of Rheology, 54 (2010), 881-913.
doi: 10.1122/1.3439729. |
[24] |
L. E. Payne and B. Straughan, Convergence of the equations for a maxwell fluid, Stud. Appl. Math., 103 (1999), 267-278. |
[25] |
M. Renardy, Similarity solutions for jet breakup for various models of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 104 (2002), 65-74.
doi: 10.1016/S0377-0257(02)00016-2. |
[26] |
M. Renardy, On control of shear flow of an upper convected Maxwell fluid, ZAMM Z. Angew. Math. Mech., 87 (2007), 213-218.
doi: 10.1002/zamm.200610313. |
[27] |
C. E. Seyler and M. R. Martin, Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches, Phys. Plasmas, 18 (2011), [13 pages], 012703.
doi: 10.1063/1.3543799. |
[28] |
B. Straughan, The Energy Method, Stability and Nonlinear Convection, $2^{nd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-0-387-21740-6. |
[29] |
B. Straughan, Heat Waves, Applied Mathematical Sciences 177, Springer New York, 2011.
doi: 10.1007/978-1-4614-0493-4. |
[30] |
D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington, 1997. |
[31] |
L. Wilson, H. Zhou, W. Kang and H. Wang, Controllability of non-newtonian fluids under homogeneous extensional flow, Appl. Math. Sci., 2 (2008), 2145-2156. |
show all references
References:
[1] |
R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol 1. Fluid Mechanics, John Wiley & Sons, New York, 1987. |
[2] |
T. Bodnár and L. Pirkl, A Remark on the Deviatoric Decomposition of Oldroyd Type Models, Colloquium FLUID DYNAMICS 2011, Institute of Thermomechanics AS CR, v.v.i., Prague, October 19 - 21, 2011. Available from: http://www.it.cas.cz/en/colloqium-fluid-dynamics-2011 |
[3] |
R. M. Christensen, Theory of Viscoelasticity, $2^{nd}$ edition, Dover Publications, New York, 2010.
doi: 10.1115/1.3408900. |
[4] |
C. I. Christov, Frame indifferent formulation of Maxwell's elastic-fluid model and the rational continuum mechanics of the electromagnetic field, Mech. Res. Comm., 38 (2011), 334-339.
doi: 10.1016/j.mechrescom.2011.03.002. |
[5] |
M. Fabrizio, Dario graffi in a complex historical period, in Mathematicians in Bologna 1861-1960, (ed. S. Coen), Springer Basel AG, 2012, 179-195.
doi: 10.1007/978-3-0348-0227-7_7. |
[6] |
M. Fabrizio and F. Franchi, Delayed thermal models. Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.
doi: 10.1080/01495739.2013.839619. |
[7] |
F. Franchi, On the behaviour of one-dimensional waves in thermo-viscoelastic fluids, Meccanica, 17 (1982), 3-10.
doi: 10.1007/BF02156001. |
[8] |
R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheo., 16 (1972), 79-97.
doi: 10.1122/1.549256. |
[9] |
D. Graffi, On a method for proving uniqueness theorems in mathematical physics, Atti. Sem. Mat. Fis. Univ. Modena, (Italian) [On a method to prove uniqueness theorems in mathematical physics], 37 (1989), 259-284. |
[10] |
A. Guaily and M. Epstein, A unified hyperbolic model for viscoelastic liquids, Mech. Res. Comm., 37 (2010), 158-163.
doi: 10.1016/j.mechrescom.2009.12.004. |
[11] |
T. Gültop, B. Alyavuz and M. Kopaç, Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids, Mech. Res. Comm., 37 (2010), 153-157. |
[12] |
S. J. Haward, Buckling instabilities in dilute polymer solution elastic strands, Rheol. Acta., 49 (2010), 1219-1225.
doi: 10.1007/s00397-010-0467-4. |
[13] |
T. Hayat, A. Afsar and N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel, Math. Comput. Modelling, 47 (2008), 380-400.
doi: 10.1016/j.mcm.2007.04.012. |
[14] |
T. Hayat, S. Hina and A. A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, J. Mech. Med. Biol., 12 (2012), [22 pages], 1250001.
doi: 10.1142/S0219519412004375. |
[15] |
S. Hinaa, T. Hayat and S. Asghard, Peristaltic transport of Johnson-Segalman fluid in a curved channel with compliant walls, Nonlinear Anal. Model. Control, 17 (2012), 297-311. |
[16] |
D. Hu and T. Leliévre, New entropy estimates for the Oldroyd-B model and related models, Commun. Math. Sci., 5 (2007), 909-916.
doi: 10.4310/CMS.2007.v5.n4.a9. |
[17] |
M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows nonaffine deformation, J. Non-Newtionan Fluid Mech., 4 (1977), 255-270. |
[18] |
D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal., 87 (1985), 213-251.
doi: 10.1007/BF00250725. |
[19] |
R. W. Kolkka, D. S. Malkus, M. G. Hansen and G. R. Ierley, Spurt phenomena of the Johnson-Segalman fluid and related models, J. Non-Newtonian Fluid Mech., 29 (1988), 303-335.
doi: 10.1016/0377-0257(88)85059-6. |
[20] |
H. V. J. Le Meur, Well-posedness of surface wave equations above a viscoelastic fluid, J. Math. Fluid Mech., 13 (2011), 481-514.
doi: 10.1007/s00021-010-0029-7. |
[21] |
V. Y. Liapidevskii, V. V. Pukhnachev and A. Tani, Nonlinear waves in incompressible viscoelastic Maxwell medium, Wave Motion, 48 (2011), 727-737.
doi: 10.1016/j.wavemoti.2011.04.002. |
[22] |
A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105.
doi: 10.1007/s10659-010-9292-3. |
[23] |
C. J. Pipe, N. J. Kim, P. A. Vasquez, L. P. Cook and G. H. McKinley, Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions, Journal of Rheology, 54 (2010), 881-913.
doi: 10.1122/1.3439729. |
[24] |
L. E. Payne and B. Straughan, Convergence of the equations for a maxwell fluid, Stud. Appl. Math., 103 (1999), 267-278. |
[25] |
M. Renardy, Similarity solutions for jet breakup for various models of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 104 (2002), 65-74.
doi: 10.1016/S0377-0257(02)00016-2. |
[26] |
M. Renardy, On control of shear flow of an upper convected Maxwell fluid, ZAMM Z. Angew. Math. Mech., 87 (2007), 213-218.
doi: 10.1002/zamm.200610313. |
[27] |
C. E. Seyler and M. R. Martin, Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches, Phys. Plasmas, 18 (2011), [13 pages], 012703.
doi: 10.1063/1.3543799. |
[28] |
B. Straughan, The Energy Method, Stability and Nonlinear Convection, $2^{nd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-0-387-21740-6. |
[29] |
B. Straughan, Heat Waves, Applied Mathematical Sciences 177, Springer New York, 2011.
doi: 10.1007/978-1-4614-0493-4. |
[30] |
D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington, 1997. |
[31] |
L. Wilson, H. Zhou, W. Kang and H. Wang, Controllability of non-newtonian fluids under homogeneous extensional flow, Appl. Math. Sci., 2 (2008), 2145-2156. |
[1] |
Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233 |
[2] |
Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure and Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107 |
[3] |
Fei Jiang. Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29 (6) : 4051-4074. doi: 10.3934/era.2021071 |
[4] |
Xiao-Dong Yang, Roderick V. N. Melnik. Accounting for the effect of internal viscosity in dumbbell models for polymeric fluids and relaxation of DNA. Conference Publications, 2007, 2007 (Special) : 1052-1060. doi: 10.3934/proc.2007.2007.1052 |
[5] |
Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815 |
[6] |
Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001 |
[7] |
Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033 |
[8] |
Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625 |
[9] |
Colette Guillopé, Abdelilah Hakim, Raafat Talhouk. Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Communications on Pure and Applied Analysis, 2005, 4 (1) : 23-43. doi: 10.3934/cpaa.2005.4.23 |
[10] |
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations and Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265 |
[11] |
Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463 |
[12] |
Paolo Secchi. An alpha model for compressible fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351 |
[13] |
Peter Constantin. Transport in rotating fluids. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165 |
[14] |
Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 |
[15] |
D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47 |
[16] |
Robert Cardona. The topology of Bott integrable fluids. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022054 |
[17] |
Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071 |
[18] |
Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations and Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007 |
[19] |
Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic and Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373 |
[20] |
Dominic Breit, Eduard Feireisl, Martina Hofmanová. Generalized solutions to models of inviscid fluids. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3831-3842. doi: 10.3934/dcdsb.2020079 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]