\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids

Abstract Related Papers Cited by
  • We consider the free fall of slender rigid bodies in a viscous incompressible fluid. We show that the dimensional reduction (DR), performed by substituting the slender bodies with one-dimensional rigid objects, together with a hyperviscous regularization (HR) of the Navier--Stokes equation for the three-dimensional fluid lead to a well-posed fluid-structure interaction problem. In contrast to what can be achieved within a classical framework, the hyperviscous term permits a sound definition of the viscous force acting on the one-dimensional immersed body. Those results show that the DR/HR procedure can be effectively employed for the mathematical modeling of the free fall problem in the slender-body limit.
    Mathematics Subject Classification: Primary: 76D03; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.doi: 10.1002/cpa.3160120405.

    [2]

    G. K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., 44 (1970), 419-440.doi: 10.1017/S002211207000191X.

    [3]

    A. T. Chwang and T. Y.-T. Wu, Hydromechanics of low-Reynolds-number flow. II. Singularity method for Stokes flows, J. Fluid Mech., 67 (1975), 787-815.doi: 10.1017/S0022112075000614.

    [4]

    E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.doi: 10.1007/s00205-006-0015-7.

    [5]

    G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 653-791.

    [6]

    G. G. Giusteri, The multiple nature of concentrated interactions in second-gradient dissipative liquids, Z. Angew. Math. Phys., 64 (2013), 371-380.doi: 10.1007/s00033-012-0229-5.

    [7]

    G. G. Giusteri and E. Fried, Slender-body theory for viscous flow via dimensional reduction and hyperviscous regularization, Meccanica, 49 (2014), 2153-2167.doi: 10.1007/s11012-014-9890-4.

    [8]

    G. G. Giusteri, A. Marzocchi and A. Musesti, Three-dimensional nonsimple viscous liquids dragged by one-dimensional immersed bodies, Mech. Res. Commun., 37 (2010), 642-646.doi: 10.1016/j.mechrescom.2010.09.001.

    [9]

    G. G. Giusteri, A. Marzocchi and A. Musesti, Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures, Acta Mech., 217 (2011), 191-204.doi: 10.1007/s00707-010-0387-5.

    [10]

    G. G. Giusteri, A. Marzocchi and A. Musesti, Steady free fall of one-dimensional bodies in a hyperviscous fluid at low Reynolds number, to appear in Evol. Equ. Control Theory (http://arxiv.org/abs/1305.0707).

    [11]

    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Martinus Nijhoff Publishers, The Hague, 1983.

    [12]

    R. E. Johnson, An improved slender-body theory for Stokes flow, J. Fluid Mech., 99 (1980), 411-431.doi: 10.1017/S0022112080000687.

    [13]

    J. B. Keller and S. I. Rubinow, Slender-body theory for slow viscous flow, J. Fluid Mech., 75 (1976), 705-714.doi: 10.1017/S0022112076000475.

    [14]

    J. Lighthill, Mathematical Biofluiddynamics, SIAM, Philadelphia, 1975.

    [15]

    ________, Flagellar hydrodynamics, SIAM Rev., 18 (1976), 161-230.doi: 10.1137/1018040.

    [16]

    J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, Paris, 1969.

    [17]

    A. Musesti, Isotropic linear constitutive relations for nonsimple fluids, Acta Mech., 204 (2009), 81-88.doi: 10.1007/s00707-008-0050-6.

    [18]

    D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110.doi: 10.1007/BF03167757.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return