September  2014, 19(7): 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

Inverse problems for singular differential-operator equations with higher order polar singularities

1. 

Department of Mathematics, The University of Jordan, Amman, Jordan

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

Received  May 2013 Revised  April 2014 Published  August 2014

In this paper we study an inverse problem for strongly degenerate differential equations in Banach spaces. Projection method on suitable subspaces will be used to solve the given problem. A number of concrete applications to ordinary and partial differential equations is described.
Citation: Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159
References:
[1]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, Preprint., ().   Google Scholar

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, Journal of Optimization Theory and Applications, 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[3]

R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators,, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111.  doi: 10.1007/978-3-0348-0075-4_7.  Google Scholar

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative,, Marcel Dekker, (2003).  doi: 10.1201/9780203911433.  Google Scholar

[5]

A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations,, Tsukuba J. Math., 35 (2011), 259.   Google Scholar

[6]

A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type,, Applicable Analysis, 91 (2012), 1511.  doi: 10.1080/00036811.2011.630665.  Google Scholar

[7]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[8]

F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen,, B. G. Teubner, (1974).   Google Scholar

[9]

A. E. Taylor, Introduction to Functional Analysis,, John Wiley & Sons, (1958).   Google Scholar

[10]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[11]

L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations,, (rus.)- Dnepropetrovsk: System Technology, (2006).   Google Scholar

[12]

K. Yosida, Functional Analysis,, $6^{th}$ ed, (1980).   Google Scholar

[13]

S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations,, Chapman & Hall, (2000).   Google Scholar

show all references

References:
[1]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, Preprint., ().   Google Scholar

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, Journal of Optimization Theory and Applications, 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[3]

R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators,, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111.  doi: 10.1007/978-3-0348-0075-4_7.  Google Scholar

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative,, Marcel Dekker, (2003).  doi: 10.1201/9780203911433.  Google Scholar

[5]

A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations,, Tsukuba J. Math., 35 (2011), 259.   Google Scholar

[6]

A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type,, Applicable Analysis, 91 (2012), 1511.  doi: 10.1080/00036811.2011.630665.  Google Scholar

[7]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[8]

F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen,, B. G. Teubner, (1974).   Google Scholar

[9]

A. E. Taylor, Introduction to Functional Analysis,, John Wiley & Sons, (1958).   Google Scholar

[10]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[11]

L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations,, (rus.)- Dnepropetrovsk: System Technology, (2006).   Google Scholar

[12]

K. Yosida, Functional Analysis,, $6^{th}$ ed, (1980).   Google Scholar

[13]

S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations,, Chapman & Hall, (2000).   Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]