-
Previous Article
Strain gradient theory of porous solids with initial stresses and initial heat flux
- DCDS-B Home
- This Issue
-
Next Article
Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids
Inverse problems for singular differential-operator equations with higher order polar singularities
1. | Department of Mathematics, The University of Jordan, Amman, Jordan |
2. | Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna |
References:
[1] |
M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint. |
[2] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.
doi: 10.1007/s10957-006-9083-y. |
[3] |
R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111-130.
doi: 10.1007/978-3-0348-0075-4_7. |
[4] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003.
doi: 10.1201/9780203911433. |
[5] |
A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations, Tsukuba J. Math., 35 (2011), 259-323. |
[6] |
A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type, Applicable Analysis, 91 (2012), 1511-1527.
doi: 10.1080/00036811.2011.630665. |
[7] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc. New York, 1999. |
[8] |
F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1974. |
[9] |
A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958. |
[10] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978. |
[11] |
L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations, (rus.)- Dnepropetrovsk: System Technology, 2006. |
[12] |
K. Yosida, Functional Analysis, $6^{th}$ ed, Springer Verlag, Berlin-Heidelberg, New York, 1980. |
[13] |
S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall, Boca Raton, USA, 2000. |
show all references
References:
[1] |
M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint. |
[2] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.
doi: 10.1007/s10957-006-9083-y. |
[3] |
R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111-130.
doi: 10.1007/978-3-0348-0075-4_7. |
[4] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003.
doi: 10.1201/9780203911433. |
[5] |
A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations, Tsukuba J. Math., 35 (2011), 259-323. |
[6] |
A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type, Applicable Analysis, 91 (2012), 1511-1527.
doi: 10.1080/00036811.2011.630665. |
[7] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc. New York, 1999. |
[8] |
F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1974. |
[9] |
A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958. |
[10] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978. |
[11] |
L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations, (rus.)- Dnepropetrovsk: System Technology, 2006. |
[12] |
K. Yosida, Functional Analysis, $6^{th}$ ed, Springer Verlag, Berlin-Heidelberg, New York, 1980. |
[13] |
S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall, Boca Raton, USA, 2000. |
[1] |
Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081 |
[2] |
Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671 |
[3] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[4] |
Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022 |
[5] |
Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121 |
[6] |
Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations and Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355 |
[7] |
M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215 |
[8] |
J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136 |
[9] |
Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 |
[10] |
Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263 |
[11] |
Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 |
[12] |
Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253 |
[13] |
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 |
[14] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[15] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[16] |
Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 |
[17] |
Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507 |
[18] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[19] |
Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019 |
[20] |
Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]