Citation: |
[1] |
J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 17 (1992), 841-866.doi: 10.1080/03605309208820866. |
[2] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. |
[3] |
J. M. Ball, Attractors of damped wave equations, Conference at Oberwolfach (Germany), 10 (1992), 31-52.doi: 10.3934/dcds.2004.10.31. |
[4] |
J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.doi: 10.3934/dcds.2004.10.31. |
[5] |
R. Brown, P. Perry and Z. Shen, On the dimension of the attractor for the non-homogeneous Navier-Stokes equations in non-smooth domains, Indiana Univ. Math. J., 49 (2000), 81-112.doi: 10.1512/iumj.2000.49.1603. |
[6] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 278, 2000.doi: 10.1017/CBO9780511526404. |
[7] |
I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta Scientific Publishing House, Kharkiv, 2002. |
[8] |
I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.doi: 10.1007/s10884-004-4289-x. |
[9] |
I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008).doi: 10.1090/memo/0912. |
[10] |
C. V. Coffman, A mininum principle for a class of nonlinear integral equations, J. Analyse Math., 22 (1969), 391-419.doi: 10.1007/BF02786802. |
[11] |
E. Feireisl, Finite dimensional asymptotic behavior of some semilinear damped hyperbolic problems, J. Dynam. Differential Equations, 6 (1994), 23-35.doi: 10.1007/BF02219186. |
[12] |
S. Gatti and V. Pata, A one-dimensional wave equation with nonlinear damping, Glasg. Math. J., 48 (2006), 419-430.doi: 10.1017/S0017089506003156. |
[13] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. |
[14] |
B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite- dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.doi: 10.1088/0951-7715/12/5/303. |
[15] |
A. Kh. Khanmamedov, Global attractors for wave equation with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.doi: 10.1016/j.jde.2006.06.001. |
[16] |
M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964. |
[17] |
I. Lasiecka and A. R. Ruzmaikina, Finite dimensionality and regularity of attractors for 2-D semilinear wave equation with nonlinear dissipation, J. Math. Anal. Appl., 270 (2002), 16-50.doi: 10.1016/S0022-247X(02)00006-9. |
[18] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, IV, Elsevier, North-Holland, Amsterdam, 2008, 103-200.doi: 10.1016/S1874-5717(08)00003-0. |
[19] |
V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal., 5 (2006), 611-616. |
[20] |
V. Pata and S. Zelik, Attractors and their regularity for 2-D wave equations with nonlinear damping, Adv. Math. Sci. Appl., 17 (2007), 225-237. |
[21] |
D. Prazak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dynam. Differential Equations, 14 (2002), 763-776. |
[22] |
G. Raugel, Global attractors in partial differential equations, Handbook of dynamical systems, North-Holland, Amsterdam, 2 (2002), 885-982.doi: 10.1016/S1874-575X(02)80038-8. |
[23] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0. |
[24] |
M. Struwe, Variational Methods, Springer-Verlage Berlin Heidelberg, New York, 2000. |
[25] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. |
[26] |
C. K. Zhong and W. S. Niu, On the $Z_2$ index of the global attractor for a class of $p$- Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.doi: 10.1016/j.na.2010.07.022. |
[27] |
C. K. Zhong, B. You and R. Yang, The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems, (preprint). |
[28] |
S. F. Zhou, Dimension of the global attractor for damped nonlinear wave equation, Proc. Amer. Math. Soc., 127 (1999), 3623-3631.doi: 10.1090/S0002-9939-99-05121-7. |