-
Previous Article
Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model
- DCDS-B Home
- This Issue
-
Next Article
Strain gradient theory of porous solids with initial stresses and initial heat flux
Second-sound phenomena in inviscid, thermally relaxing gases
1. | Acoustics Div., U.S. Naval Research Laboratory, Stennis Space Ctr., MS 39529, United States |
References:
[1] |
R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25. Google Scholar |
[2] |
B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489.
doi: 10.1115/1.3601240. |
[3] |
S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8. Google Scholar |
[4] |
S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63.
doi: 10.1007/978-3-642-05171-5_7. |
[5] |
M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321.
doi: 10.1007/BF02734451. |
[6] |
H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963).
|
[7] |
C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83.
|
[8] |
D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355. Google Scholar |
[9] |
W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44.
doi: 10.1017/S0022112064000040. |
[10] |
C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481.
doi: 10.1016/j.mechrescom.2008.11.003. |
[11] |
I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).
doi: 10.1088/1367-2630/10/4/043027. |
[12] |
I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013).
doi: 10.1016/j.matcom.2013.03.011. |
[13] |
B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135.
doi: 10.1007/BF00250739. |
[14] |
D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11.
doi: 10.1146/annurev.fl.11.010179.000303. |
[15] |
D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1. Google Scholar |
[16] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010).
doi: 10.1007/978-3-642-04048-1. |
[17] |
W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3.
doi: 10.1007/BF01135371. |
[18] |
D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004).
doi: 10.1201/9781420035148. |
[19] |
P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181.
doi: 10.1016/0022-460X(72)90905-4. |
[20] |
H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205.
|
[21] |
P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18.
doi: 10.1016/j.matcom.2010.06.011. |
[22] |
P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56.
doi: 10.1016/j.euromechflu.2012.01.016. |
[23] |
P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865.
doi: 10.1080/01495730600705505. |
[24] |
D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035.
doi: 10.1088/0034-4885/62/7/201. |
[25] |
B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012).
doi: 10.1142/S0218202512500352. |
[26] |
R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991.
doi: 10.3934/dcdsb.2011.15.991. |
[27] |
M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501.
doi: 10.1017/S0022112068000303. |
[28] |
K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53.
doi: 10.1007/BF00276179. |
[29] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579. Google Scholar |
[30] |
J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49. Google Scholar |
[31] |
F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117. Google Scholar |
[32] |
J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705.
doi: 10.1017/S0022112066000351. |
[33] |
A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145.
|
[34] |
A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193.
|
[35] |
I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329. Google Scholar |
[36] |
I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993).
doi: 10.1007/978-1-4684-0447-0. |
[37] |
V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944). Google Scholar |
[38] |
A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989). Google Scholar |
[39] |
T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167.
doi: 10.1007/BF01189206. |
[40] |
T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3.
doi: 10.1007/BF01125883. |
[41] |
J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125.
|
[42] |
G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142.
doi: 10.1017/CBO9780511702266.005. |
[43] |
B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763.
doi: 10.1016/j.matcom.2009.08.013. |
[44] |
B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.
doi: 10.1016/j.physleta.2010.04.054. |
[45] |
B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011).
doi: 10.1007/978-1-4614-0493-4. |
[46] |
P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar |
[47] |
J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760.
doi: 10.1103/PhysRev.104.1760. |
[48] |
V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77.
doi: 10.1016/j.mechrescom.2010.10.008. |
[49] |
D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997). Google Scholar |
[50] |
H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488.
doi: 10.1119/1.1974155. |
show all references
References:
[1] |
R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25. Google Scholar |
[2] |
B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489.
doi: 10.1115/1.3601240. |
[3] |
S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8. Google Scholar |
[4] |
S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63.
doi: 10.1007/978-3-642-05171-5_7. |
[5] |
M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321.
doi: 10.1007/BF02734451. |
[6] |
H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963).
|
[7] |
C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83.
|
[8] |
D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355. Google Scholar |
[9] |
W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44.
doi: 10.1017/S0022112064000040. |
[10] |
C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481.
doi: 10.1016/j.mechrescom.2008.11.003. |
[11] |
I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).
doi: 10.1088/1367-2630/10/4/043027. |
[12] |
I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013).
doi: 10.1016/j.matcom.2013.03.011. |
[13] |
B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135.
doi: 10.1007/BF00250739. |
[14] |
D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11.
doi: 10.1146/annurev.fl.11.010179.000303. |
[15] |
D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1. Google Scholar |
[16] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010).
doi: 10.1007/978-3-642-04048-1. |
[17] |
W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3.
doi: 10.1007/BF01135371. |
[18] |
D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004).
doi: 10.1201/9781420035148. |
[19] |
P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181.
doi: 10.1016/0022-460X(72)90905-4. |
[20] |
H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205.
|
[21] |
P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18.
doi: 10.1016/j.matcom.2010.06.011. |
[22] |
P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56.
doi: 10.1016/j.euromechflu.2012.01.016. |
[23] |
P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865.
doi: 10.1080/01495730600705505. |
[24] |
D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035.
doi: 10.1088/0034-4885/62/7/201. |
[25] |
B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012).
doi: 10.1142/S0218202512500352. |
[26] |
R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991.
doi: 10.3934/dcdsb.2011.15.991. |
[27] |
M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501.
doi: 10.1017/S0022112068000303. |
[28] |
K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53.
doi: 10.1007/BF00276179. |
[29] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579. Google Scholar |
[30] |
J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49. Google Scholar |
[31] |
F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117. Google Scholar |
[32] |
J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705.
doi: 10.1017/S0022112066000351. |
[33] |
A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145.
|
[34] |
A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193.
|
[35] |
I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329. Google Scholar |
[36] |
I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993).
doi: 10.1007/978-1-4684-0447-0. |
[37] |
V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944). Google Scholar |
[38] |
A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989). Google Scholar |
[39] |
T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167.
doi: 10.1007/BF01189206. |
[40] |
T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3.
doi: 10.1007/BF01125883. |
[41] |
J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125.
|
[42] |
G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142.
doi: 10.1017/CBO9780511702266.005. |
[43] |
B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763.
doi: 10.1016/j.matcom.2009.08.013. |
[44] |
B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.
doi: 10.1016/j.physleta.2010.04.054. |
[45] |
B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011).
doi: 10.1007/978-1-4614-0493-4. |
[46] |
P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar |
[47] |
J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760.
doi: 10.1103/PhysRev.104.1760. |
[48] |
V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77.
doi: 10.1016/j.mechrescom.2010.10.008. |
[49] |
D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997). Google Scholar |
[50] |
H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488.
doi: 10.1119/1.1974155. |
[1] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[2] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[3] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[4] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[5] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
[8] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[9] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[10] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[11] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[12] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[13] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[14] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[15] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[16] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[17] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[18] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[19] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[20] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]