• Previous Article
    Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model
  • DCDS-B Home
  • This Issue
  • Next Article
    Strain gradient theory of porous solids with initial stresses and initial heat flux
September  2014, 19(7): 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

Second-sound phenomena in inviscid, thermally relaxing gases

1. 

Acoustics Div., U.S. Naval Research Laboratory, Stennis Space Ctr., MS 39529, United States

Received  April 2013 Revised  August 2013 Published  August 2014

We consider the propagation of acoustic and thermal waves in a class of inviscid, thermally relaxing gases wherein the flow of heat is described by the Maxwell--Cattaneo law, i.e., in Cattaneo--Christov gases. After first considering the start-up piston problem under the linear theory, we then investigate traveling wave phenomena under the weakly-nonlinear approximation. In particular, a shock analysis is carried out, comparisons with predictions from classical gases dynamics theory are performed, and critical values of the parameters are derived. Special case results are also presented and connections to other fields are noted.
Citation: Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189
References:
[1]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25.   Google Scholar

[2]

B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489.  doi: 10.1115/1.3601240.  Google Scholar

[3]

S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8.   Google Scholar

[4]

S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63.  doi: 10.1007/978-3-642-05171-5_7.  Google Scholar

[5]

M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321.  doi: 10.1007/BF02734451.  Google Scholar

[6]

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963).   Google Scholar

[7]

C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83.   Google Scholar

[8]

D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355.   Google Scholar

[9]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44.  doi: 10.1017/S0022112064000040.  Google Scholar

[10]

C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481.  doi: 10.1016/j.mechrescom.2008.11.003.  Google Scholar

[11]

I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).  doi: 10.1088/1367-2630/10/4/043027.  Google Scholar

[12]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013).  doi: 10.1016/j.matcom.2013.03.011.  Google Scholar

[13]

B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135.  doi: 10.1007/BF00250739.  Google Scholar

[14]

D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[15]

D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1.   Google Scholar

[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[17]

W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3.  doi: 10.1007/BF01135371.  Google Scholar

[18]

D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004).  doi: 10.1201/9781420035148.  Google Scholar

[19]

P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181.  doi: 10.1016/0022-460X(72)90905-4.  Google Scholar

[20]

H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205.   Google Scholar

[21]

P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18.  doi: 10.1016/j.matcom.2010.06.011.  Google Scholar

[22]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56.  doi: 10.1016/j.euromechflu.2012.01.016.  Google Scholar

[23]

P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865.  doi: 10.1080/01495730600705505.  Google Scholar

[24]

D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035.  doi: 10.1088/0034-4885/62/7/201.  Google Scholar

[25]

B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[26]

R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991.  doi: 10.3934/dcdsb.2011.15.991.  Google Scholar

[27]

M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501.  doi: 10.1017/S0022112068000303.  Google Scholar

[28]

K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53.  doi: 10.1007/BF00276179.  Google Scholar

[29]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579.   Google Scholar

[30]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49.   Google Scholar

[31]

F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117.   Google Scholar

[32]

J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705.  doi: 10.1017/S0022112066000351.  Google Scholar

[33]

A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145.   Google Scholar

[34]

A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193.   Google Scholar

[35]

I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329.   Google Scholar

[36]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993).  doi: 10.1007/978-1-4684-0447-0.  Google Scholar

[37]

V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944).   Google Scholar

[38]

A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989).   Google Scholar

[39]

T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167.  doi: 10.1007/BF01189206.  Google Scholar

[40]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3.  doi: 10.1007/BF01125883.  Google Scholar

[41]

J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125.   Google Scholar

[42]

G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142.  doi: 10.1017/CBO9780511702266.005.  Google Scholar

[43]

B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763.  doi: 10.1016/j.matcom.2009.08.013.  Google Scholar

[44]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.  doi: 10.1016/j.physleta.2010.04.054.  Google Scholar

[45]

B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[46]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972).   Google Scholar

[47]

J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760.  doi: 10.1103/PhysRev.104.1760.  Google Scholar

[48]

V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77.  doi: 10.1016/j.mechrescom.2010.10.008.  Google Scholar

[49]

D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997).   Google Scholar

[50]

H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488.  doi: 10.1119/1.1974155.  Google Scholar

show all references

References:
[1]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics, (1997), 25.   Google Scholar

[2]

B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems,, J. Appl. Mech. (ASME), 35 (1968), 489.  doi: 10.1115/1.3601240.  Google Scholar

[3]

S. Carillo, Bäcklund transformations & heat conduction with memory,, in New Trends in Fluid and Solid Models: Proceedings of the International Conference in Honour of Brian Straughan (Supplementary) (eds. M. Ciarletta, (2010), 8.   Google Scholar

[4]

S. Carillo, Nonlinear hyperbolic equations and linear heat conduction with memory,, in Mechanics of Microstructured Solids 2, (2010), 63.  doi: 10.1007/978-3-642-05171-5_7.  Google Scholar

[5]

M. Carrassi and A. Morro, A modified Navier-Stokes equations and its consequences on sound dispersion,, Nuovo Cimento B, 9 (1972), 321.  doi: 10.1007/BF02734451.  Google Scholar

[6]

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,, Dover, (1963).   Google Scholar

[7]

C. Cattaneo, Sulla conduzione del calore,, Atti del Semin. Mat. Fis. Della Univ. Modena, 3 (1949), 83.   Google Scholar

[8]

D. S. Chandrasekharaiah, Thermoelasticity with second sound: A Review,, Appl. Mech. Rev., 39 (1986), 355.   Google Scholar

[9]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44.  doi: 10.1017/S0022112064000040.  Google Scholar

[10]

C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction,, Mech. Res. Commun., 36 (2009), 481.  doi: 10.1016/j.mechrescom.2008.11.003.  Google Scholar

[11]

I. C. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).  doi: 10.1088/1367-2630/10/4/043027.  Google Scholar

[12]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simul., (2013).  doi: 10.1016/j.matcom.2013.03.011.  Google Scholar

[13]

B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals,, Arch. Rat. Mech. Anal., 80 (1982), 135.  doi: 10.1007/BF00250739.  Google Scholar

[14]

D. G. Crighton, Model equations of nonlinear acoustics,, Ann. Rev. Fluid Mech., 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[15]

D. G. Crighton, Basic theoretical nonlinear acoustics,, in Frontiers in Physical Acoustics, (1986), 1.   Google Scholar

[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edn., (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[17]

W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,, Cont. Mech. Thermodyn, 5 (1993), 3.  doi: 10.1007/BF01135371.  Google Scholar

[18]

D. G. Duffy, Transform Methods for Solving Partial Differential Equations,, 2nd edn., (2004).  doi: 10.1201/9781420035148.  Google Scholar

[19]

P. H. Francis, Thermo-mechanical effects in elastic wave propagation: A survey,, J. Sound Vib., 21 (1972), 181.  doi: 10.1016/0022-460X(72)90905-4.  Google Scholar

[20]

H. Grad, Thermodynamics of gases,, in Handbuch der Physik (ed. S. Flügge), XII (1960), 205.   Google Scholar

[21]

P. M. Jordan, On the application of the Cole-Hopf transformation to hyperbolic equations based on second-sound models,, Math. Comput. Simul., 81 (2010), 18.  doi: 10.1016/j.matcom.2010.06.011.  Google Scholar

[22]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56.  doi: 10.1016/j.euromechflu.2012.01.016.  Google Scholar

[23]

P. M. Jordan and P. Puri, Revisiting the Danilovskaya problem,, J. Thermal Stresses, 29 (2006), 865.  doi: 10.1080/01495730600705505.  Google Scholar

[24]

D. Jou, C. Cásas-Vazquez and G. Lebon, Extended irreversible thermodynamics revisited (1988-98),, Rep. Prog. Phys., 62 (1999), 1035.  doi: 10.1088/0034-4885/62/7/201.  Google Scholar

[25]

B. Kaltenbacher, I. Lasieck and M. Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[26]

R. E. Khayat and M. Ostoja-Starzewski, On the objective rate of heat and stress fluxes: Connection with micro/nano-scale heat convection,, Discrete Cont. Dyn. Sys., 15 (2011), 991.  doi: 10.3934/dcdsb.2011.15.991.  Google Scholar

[27]

M. B. Lesser, R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501.  doi: 10.1017/S0022112068000303.  Google Scholar

[28]

K. A. Lindsay, B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rat. Mech. Anal., 68 (1978), 53.  doi: 10.1007/BF00276179.  Google Scholar

[29]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acustica-Acta Acustica, 82 (1996), 579.   Google Scholar

[30]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc. London, 157 (1867), 49.   Google Scholar

[31]

F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects,, J. Aero/Space Sci., 27 (1960), 117.   Google Scholar

[32]

J. P. Moran and S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston,, J. Fluid Mech., 25 (1966), 705.  doi: 10.1017/S0022112066000351.  Google Scholar

[33]

A. Morro, Wave propagation in thermo-viscous materials with hidden variables,, Arch. Mech., 32 (1980), 145.   Google Scholar

[34]

A. Morro, Shock waves in thermo-viscous fluids with hidden variables,, Arch. Mech., 32 (1980), 193.   Google Scholar

[35]

I. Müller, Zum Paradoxon der Wärmeleitungstheorie,, Z. Phys., 198 (1967), 329.   Google Scholar

[36]

I. Müller and T. Ruggeri, Extended Thermodynamics,, Springer Tracts in Natural Philosophy, (1993).  doi: 10.1007/978-1-4684-0447-0.  Google Scholar

[37]

V. Peshkov, "Second sound'' in helium II,, J. Phys., 8 (1944).   Google Scholar

[38]

A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications,, Acoustical Society of America, (1989).   Google Scholar

[39]

T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid,, Acta Mech., 47 (1983), 167.  doi: 10.1007/BF01189206.  Google Scholar

[40]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws,, Cont. Mech. Thermodyn, 1 (1989), 3.  doi: 10.1007/BF01125883.  Google Scholar

[41]

J. Serrin, Mathematical principles of classical fluid mechanics,, in Handbuch der Physik, (1959), 125.   Google Scholar

[42]

G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound,, Phil. Mag. (Ser. 4), 3 (2009), 142.  doi: 10.1017/CBO9780511702266.005.  Google Scholar

[43]

B. Straughan, Nonlinear acceleration waves in porous media,, Math. Comput. Simul., 80 (2009), 763.  doi: 10.1016/j.matcom.2009.08.013.  Google Scholar

[44]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.  doi: 10.1016/j.physleta.2010.04.054.  Google Scholar

[45]

B. Straughan, Heat Waves,, Applied Mathematical Sciences, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[46]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972).   Google Scholar

[47]

J. S. Toll, Causality and the dispersion relation: Logical foundations,, Phys. Rev., 104 (1956), 1760.  doi: 10.1103/PhysRev.104.1760.  Google Scholar

[48]

V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids,, Mech. Res. Commun., 38 (2011), 77.  doi: 10.1016/j.mechrescom.2010.10.008.  Google Scholar

[49]

D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior,, Taylor & Francis, (1997).   Google Scholar

[50]

H. D. Weymann, Finite speed of propagation in heat conduction, diffusion, and viscous shear motion,, Amer. J. Phys., 35 (1967), 488.  doi: 10.1119/1.1974155.  Google Scholar

[1]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[2]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[3]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[4]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[9]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[10]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[11]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[12]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[16]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[17]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[18]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]