September  2014, 19(7): 2207-2225. doi: 10.3934/dcdsb.2014.19.2207

Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model

1. 

Civil Infrastructure and Environmental Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, 127788, United Arab Emirates

2. 

Department of Mechanical Engineering, University of Houston, Houston, Texas, TX77204-4006, United States

3. 

Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States

4. 

Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology, Okinawal, 904-0495, Japan

Received  April 2013 Revised  January 2014 Published  August 2014

We study the effect of the length scales $\alpha$ and $\beta$ on the performance of the Navier--Stokes-$\alpha\beta$ equations for numerical simulations of turbulence over coarse discretizations. To this end, we rely on the strained spiral vortex model and take advantage of the dimensional reduction allowed by that model. In particular, the three-dimensional energy spectrum is reformulated so that it can be calculated from solutions of the two-dimensional unstrained Navier--Stokes-$\alpha\beta$ equations. A similarity theory for the spiral vortex model shows that the Navier--Stokes-$\alpha\beta$ model is better equipped than the Navier--Stokes-$\alpha$ model to capture smaller-scale behavior. Numerical experiments performed using a pseudo-spectral discretization along with the second-order Adams--Bashforth time-stepping algorithm yield results indicating that the fidelity of the energy spectrum in both the inertial and dissipation ranges is significantly improved for $\beta<\alpha$.
Citation: Tae-Yeon Kim, Xuemei Chen, John E. Dolbow, Eliot Fried. Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2207-2225. doi: 10.3934/dcdsb.2014.19.2207
References:
[1]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow,, Phys. Rev. Lett., 81 (1998), 5338.  doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[2]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence,, Physica D, 133 (1999), 49.  doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[3]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes,, Phys. Fluids, 11 (1999), 2343.  doi: 10.1063/1.870096.  Google Scholar

[4]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion,, Phys. Rev. Lett., 80 (1998), 4173.   Google Scholar

[5]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[6]

S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model,, Physica D, 133 (1999), 66.  doi: 10.1016/S0167-2789(99)00099-8.  Google Scholar

[7]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory,, J. Dyn. Diff. Eq., 14 (2002), 1.  doi: 10.1023/A:1012984210582.  Google Scholar

[8]

E. Fried and M. E. Gurtin, Turbulence kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes-$\alpha$ theory,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.056306.  Google Scholar

[9]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid ow at small length scales,, Arch. Rational Mech. Anal., 182 (2006), 513.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[10]

T.-Y. Kim, M. Cassiani, J. D. Albertson, J. E. Dolbow, E. Fried and M. E. Gurtin, Impact of the inherent separation of scales in the Navier-Stokes-$\alpha\beta$ equations,, Phys. Rev. E., 79 (2009).  doi: 10.1103/PhysRevE.79.045307.  Google Scholar

[11]

T.-Y. Kim, M. Neda, L. G. Rebholz and E. Fried, A numerical study of the Navier-Stokes-$\alpha\beta$ model,, Comp. Meth. Appl. Mech. Eng., 200 (2011), 2891.  doi: 10.1016/j.cma.2011.05.011.  Google Scholar

[12]

T. S. Lundgren, Strained spiral vortex model for turbulent fine structure,, Phys. Fluids, 25 (1982), 2193.  doi: 10.1063/1.863957.  Google Scholar

[13]

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,, Dokl. Akad. Nauk SSSR, 30 (1941), 301.   Google Scholar

[14]

T. S. Lundgren, A small-scale turbulence model,, Phys. Fluids A, 5 (1993), 1472.  doi: 10.1063/1.858585.  Google Scholar

[15]

D. I. Pullin and P. G. Saffman, On the Lungren-Townsend model of a turbulent fine scales,, Phys. Fluids A, 5 (1993), 126.  doi: 10.1063/1.858798.  Google Scholar

[16]

D. I. Pullin, J. D. Buntine and P. G. Saffman, On the spectrum of a stretched spiral vortex,, Phys. Fluids, 6 (1994), 3010.  doi: 10.1063/1.868127.  Google Scholar

[17]

X. Chen and E. Fried, The influence of the dispersive and dissipative scales $\alpha$ and $\beta$ on the energy spectrum of the Navier-Stokes-$\alpha\beta$ model for turbulent flow,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046317.  Google Scholar

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence,, Physica D, 152 (2001), 505.  doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

show all references

References:
[1]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow,, Phys. Rev. Lett., 81 (1998), 5338.  doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[2]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence,, Physica D, 133 (1999), 49.  doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[3]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes,, Phys. Fluids, 11 (1999), 2343.  doi: 10.1063/1.870096.  Google Scholar

[4]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion,, Phys. Rev. Lett., 80 (1998), 4173.   Google Scholar

[5]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[6]

S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model,, Physica D, 133 (1999), 66.  doi: 10.1016/S0167-2789(99)00099-8.  Google Scholar

[7]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory,, J. Dyn. Diff. Eq., 14 (2002), 1.  doi: 10.1023/A:1012984210582.  Google Scholar

[8]

E. Fried and M. E. Gurtin, Turbulence kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes-$\alpha$ theory,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.056306.  Google Scholar

[9]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid ow at small length scales,, Arch. Rational Mech. Anal., 182 (2006), 513.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[10]

T.-Y. Kim, M. Cassiani, J. D. Albertson, J. E. Dolbow, E. Fried and M. E. Gurtin, Impact of the inherent separation of scales in the Navier-Stokes-$\alpha\beta$ equations,, Phys. Rev. E., 79 (2009).  doi: 10.1103/PhysRevE.79.045307.  Google Scholar

[11]

T.-Y. Kim, M. Neda, L. G. Rebholz and E. Fried, A numerical study of the Navier-Stokes-$\alpha\beta$ model,, Comp. Meth. Appl. Mech. Eng., 200 (2011), 2891.  doi: 10.1016/j.cma.2011.05.011.  Google Scholar

[12]

T. S. Lundgren, Strained spiral vortex model for turbulent fine structure,, Phys. Fluids, 25 (1982), 2193.  doi: 10.1063/1.863957.  Google Scholar

[13]

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,, Dokl. Akad. Nauk SSSR, 30 (1941), 301.   Google Scholar

[14]

T. S. Lundgren, A small-scale turbulence model,, Phys. Fluids A, 5 (1993), 1472.  doi: 10.1063/1.858585.  Google Scholar

[15]

D. I. Pullin and P. G. Saffman, On the Lungren-Townsend model of a turbulent fine scales,, Phys. Fluids A, 5 (1993), 126.  doi: 10.1063/1.858798.  Google Scholar

[16]

D. I. Pullin, J. D. Buntine and P. G. Saffman, On the spectrum of a stretched spiral vortex,, Phys. Fluids, 6 (1994), 3010.  doi: 10.1063/1.868127.  Google Scholar

[17]

X. Chen and E. Fried, The influence of the dispersive and dissipative scales $\alpha$ and $\beta$ on the energy spectrum of the Navier-Stokes-$\alpha\beta$ model for turbulent flow,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046317.  Google Scholar

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence,, Physica D, 152 (2001), 505.  doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

[1]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[2]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[5]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[8]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[14]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[15]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[18]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[19]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

[Back to Top]