Citation: |
[1] |
U.-M. Ascher, S.-J. Ruuth and B. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.doi: 10.1137/0732037. |
[2] |
V. Berti and M. Fabrizio, A non-isothermal Ginzburg-Landau model in superconductivity: Existence, uniqueness and asymptotic behaviour, Nonlin. Anal., 66 (2007), 2565-2578.doi: 10.1016/j.na.2006.03.039. |
[3] |
S. Bhattacharyya, T.-W. Heo, K. Chang and L.-Q. Chen, A phase-field model of stress effect on grain boundary migration, Modelling Simul. Mater. Sci. Eng., 19 (2011), 035002.doi: 10.1088/0965-0393/19/3/035002. |
[4] |
C.-G. Canuto, M.-Y. Hussaini, A. Quarteroni and T.-A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, 2006. |
[5] |
L.-Q. Chen and W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B, 50) (1994), 15752-15756.doi: 10.1103/PhysRevB.50.15752. |
[6] |
L.-Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comp. Phys. Comm., 108 (1998), 147-158.doi: 10.1016/S0010-4655(97)00115-X. |
[7] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, 37, John-Wiley, New York, 1994. |
[8] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbbR^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.doi: 10.1016/S0764-4442(00)00259-7. |
[9] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.doi: 10.1017/S030821050000408X. |
[10] |
C.-M. Elliott and S.-M. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357.doi: 10.1007/BF00251803. |
[11] |
G.-S. Ganot, Laser Crystallization of Silicon Thin Films for Three-Dimensional Integrated Circuits, Ph.D. thesis, Colmbia University, 2012. |
[12] |
D. Gilbarg and N.-S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001. |
[13] |
J.-K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, 1988. |
[14] |
A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Masson, Paris, 1991. |
[15] |
A. Haraux and M.-A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36. |
[16] |
S.-Z. Huang, Gradient Inequalities, with Applications to Asymptotic Behavior and Stability of Gradient-Like Systems, Mathematical Surveys and Monographs 126, AMS, 2006.doi: 10.1090/surv/126. |
[17] |
M. A. Jendoubi, A simple unified approach to some convergence theorem of L. Simon, J. Func. Anal., 153 (1998), 187-202.doi: 10.1006/jfan.1997.3174. |
[18] |
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), 1214-1233.doi: 10.1137/S1064827502410633. |
[19] |
A. Kazaryan, Y. Wang, S.-A. Dregia and B. R. Patton, Grain growth in anisotropic systems: Comparison of effects of energy and mobility, Acta Mat., 50 (2002), 2491-2502.doi: 10.1016/S1359-6454(02)00078-2. |
[20] |
C.-E. Krill and L.-Q. Chen, Computer simulation of 3-D grain growth using a phasefield model, Acta Mat., 50 (2002), 3057-3073. |
[21] |
D. Kinderlehrer and C. Liu, Evolution of grain boundaries, Math. Models Methods Appl. Sci., 11 (2001), 713-729.doi: 10.1142/S0218202501001069. |
[22] |
R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D, 63 (1993), 410-423.doi: 10.1016/0167-2789(93)90120-P. |
[23] |
M.-D. Korzec and T. Ahnert, Time-stepping methods for the simulation of the self-assembly of nano-crystals in MATLAB on a GPU, J. Comp. Phys., 251 (2013), 396-413.doi: 10.1016/j.jcp.2013.05.040. |
[24] |
N. Moelans, B. Blanpain and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Comput. Coupling Phase Diagr. Thermochem., 32 (2008), 268-294.doi: 10.1016/j.calphad.2007.11.003. |
[25] |
J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001.doi: 10.1007/978-94-010-0732-0. |
[26] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, 68, Springer-Verlag, 1988.doi: 10.1007/978-1-4684-0313-8. |
[27] |
J.-A. Warren, R. Kobayashi, A.-E. Lobkovsky and W.-C. Carter, Extending phase field models of solidification to polycrystalline materials, Acta Mat., 51 (2003), 6035-6058.doi: 10.1016/S1359-6454(03)00388-4. |
[28] |
H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Math. Models Methods Appl. Sci., 17 (2007), 125-153.doi: 10.1142/S0218202507001851. |
[29] |
X. Ye, The Fourier collocation method for the Cahn-Hilliard equation, Comp. Math. Appl., 44 (2002), 213-229.doi: 10.1016/S0898-1221(02)00142-6. |
[30] |
S.-M. Zheng, Nonlinear Evolution Equations, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133, Chapman Hall/CRC, Boca Raton, Florida, 2004.doi: 10.1201/9780203492222. |