• Previous Article
    On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$
  • DCDS-B Home
  • This Issue
  • Next Article
    Analysis and simulation for an isotropic phase-field model describing grain growth
September  2014, 19(7): 2247-2265. doi: 10.3934/dcdsb.2014.19.2247

Identification problems related to cylindrical dielectrics **in presence of polarization**

1. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

Received  April 2013 Revised  August 2013 Published  August 2014

We consider the problem of recovering a polarization kernel in an axially inhomogeneous cylindrical dielectric, the polarization depending on time and the axial variable, but being constant on each cross section of the cylinder.
    For this problem, under some additional measurement, we prove an existence and uniqueness result.
Citation: Alfredo Lorenzi. Identification problems related to cylindrical dielectrics **in presence of polarization**. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2247-2265. doi: 10.3934/dcdsb.2014.19.2247
References:
[1]

H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization,, Nonlinear Anal. Real World Appl., 4 (2003), 483.  doi: 10.1016/S1468-1218(02)00074-3.  Google Scholar

[2]

H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters,, Appl. Math. Lett., 18 (2005), 423.  doi: 10.1016/j.aml.2004.02.008.  Google Scholar

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains,, Math. Methods Appl. Sci., 12 (1990), 365.  doi: 10.1002/mma.1670120406.  Google Scholar

[4]

V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations,, Lecture notes in Mathematics vol. 749, (1979).   Google Scholar

[5]

F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization,, J. Differential Equations, 203 (2004), 232.  doi: 10.1016/j.jde.2004.05.005.  Google Scholar

[6]

F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization,, J. Math. Anal. Appl., 288 (2003), 411.  doi: 10.1016/j.jmaa.2003.08.052.  Google Scholar

[7]

A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions,, J. Inverse Ill Posed Probl., 4 (1996), 115.  doi: 10.1515/jiip.1996.4.2.115.  Google Scholar

[8]

A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations,, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77.  doi: 10.1134/S1990478912040072.  Google Scholar

[9]

V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation,, Doklady Akademii Nauk, 446 (2012), 18.  doi: 10.1134/S1064562412050067.  Google Scholar

[10]

D. Sheen, A generalized Green's theorem,, Appl. Math. Lett., 5 (1992), 95.  doi: 10.1016/0893-9659(92)90096-R.  Google Scholar

show all references

References:
[1]

H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization,, Nonlinear Anal. Real World Appl., 4 (2003), 483.  doi: 10.1016/S1468-1218(02)00074-3.  Google Scholar

[2]

H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters,, Appl. Math. Lett., 18 (2005), 423.  doi: 10.1016/j.aml.2004.02.008.  Google Scholar

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains,, Math. Methods Appl. Sci., 12 (1990), 365.  doi: 10.1002/mma.1670120406.  Google Scholar

[4]

V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations,, Lecture notes in Mathematics vol. 749, (1979).   Google Scholar

[5]

F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization,, J. Differential Equations, 203 (2004), 232.  doi: 10.1016/j.jde.2004.05.005.  Google Scholar

[6]

F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization,, J. Math. Anal. Appl., 288 (2003), 411.  doi: 10.1016/j.jmaa.2003.08.052.  Google Scholar

[7]

A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions,, J. Inverse Ill Posed Probl., 4 (1996), 115.  doi: 10.1515/jiip.1996.4.2.115.  Google Scholar

[8]

A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations,, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77.  doi: 10.1134/S1990478912040072.  Google Scholar

[9]

V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation,, Doklady Akademii Nauk, 446 (2012), 18.  doi: 10.1134/S1064562412050067.  Google Scholar

[10]

D. Sheen, A generalized Green's theorem,, Appl. Math. Lett., 5 (1992), 95.  doi: 10.1016/0893-9659(92)90096-R.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[14]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]