• Previous Article
    On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$
  • DCDS-B Home
  • This Issue
  • Next Article
    Analysis and simulation for an isotropic phase-field model describing grain growth
September  2014, 19(7): 2247-2265. doi: 10.3934/dcdsb.2014.19.2247

Identification problems related to cylindrical dielectrics **in presence of polarization**

1. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

Received  April 2013 Revised  August 2013 Published  August 2014

We consider the problem of recovering a polarization kernel in an axially inhomogeneous cylindrical dielectric, the polarization depending on time and the axial variable, but being constant on each cross section of the cylinder.
    For this problem, under some additional measurement, we prove an existence and uniqueness result.
Citation: Alfredo Lorenzi. Identification problems related to cylindrical dielectrics **in presence of polarization**. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2247-2265. doi: 10.3934/dcdsb.2014.19.2247
References:
[1]

H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization, Nonlinear Anal. Real World Appl., 4 (2003), 483-501. doi: 10.1016/S1468-1218(02)00074-3.

[2]

H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters, Appl. Math. Lett., 18 (2005), 423-430. doi: 10.1016/j.aml.2004.02.008.

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci., 12 (1990), 365-368. doi: 10.1002/mma.1670120406.

[4]

V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations, Lecture notes in Mathematics vol. 749, Springer Verlag, Berlin 1979.

[5]

F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization, J. Differential Equations, 203 (2004), 232-254. doi: 10.1016/j.jde.2004.05.005.

[6]

F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization, J. Math. Anal. Appl., 288 (2003), 411-423. doi: 10.1016/j.jmaa.2003.08.052.

[7]

A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions, J. Inverse Ill Posed Probl., 4 (1996), 115-143. doi: 10.1515/jiip.1996.4.2.115.

[8]

A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77-86 (in Russian); English translation in Journal of Applied and Industrial Mathematics, 6 (2012), 460-468. doi: 10.1134/S1990478912040072.

[9]

V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation, Doklady Akademii Nauk, 446 (2012), 18-20; English transl. in Doklady Mathematics, 86 (2012), 608-610. doi: 10.1134/S1064562412050067.

[10]

D. Sheen, A generalized Green's theorem, Appl. Math. Lett., 5 (1992), 95-98. doi: 10.1016/0893-9659(92)90096-R.

show all references

References:
[1]

H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization, Nonlinear Anal. Real World Appl., 4 (2003), 483-501. doi: 10.1016/S1468-1218(02)00074-3.

[2]

H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters, Appl. Math. Lett., 18 (2005), 423-430. doi: 10.1016/j.aml.2004.02.008.

[3]

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci., 12 (1990), 365-368. doi: 10.1002/mma.1670120406.

[4]

V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations, Lecture notes in Mathematics vol. 749, Springer Verlag, Berlin 1979.

[5]

F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization, J. Differential Equations, 203 (2004), 232-254. doi: 10.1016/j.jde.2004.05.005.

[6]

F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization, J. Math. Anal. Appl., 288 (2003), 411-423. doi: 10.1016/j.jmaa.2003.08.052.

[7]

A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions, J. Inverse Ill Posed Probl., 4 (1996), 115-143. doi: 10.1515/jiip.1996.4.2.115.

[8]

A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77-86 (in Russian); English translation in Journal of Applied and Industrial Mathematics, 6 (2012), 460-468. doi: 10.1134/S1990478912040072.

[9]

V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation, Doklady Akademii Nauk, 446 (2012), 18-20; English transl. in Doklady Mathematics, 86 (2012), 608-610. doi: 10.1134/S1064562412050067.

[10]

D. Sheen, A generalized Green's theorem, Appl. Math. Lett., 5 (1992), 95-98. doi: 10.1016/0893-9659(92)90096-R.

[1]

Paulo Cesar Carrião, Patrícia L. Cunha, Olímpio Hiroshi Miyagaki. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Communications on Pure and Applied Analysis, 2011, 10 (2) : 709-718. doi: 10.3934/cpaa.2011.10.709

[2]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

[3]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[4]

Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428

[5]

Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151

[6]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[7]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[8]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[9]

Jérémi Dardé, Sylvain Ervedoza. Backward uniqueness results for some parabolic equations in an infinite rod. Mathematical Control and Related Fields, 2019, 9 (4) : 673-696. doi: 10.3934/mcrf.2019046

[10]

Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure and Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163

[11]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[12]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[13]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[14]

Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050

[15]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[16]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[17]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[18]

Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021269

[19]

Monica Lazzo. Existence and multiplicity results for a class of nonlinear elliptic problems in $\mathbb(R)^N$. Conference Publications, 2003, 2003 (Special) : 526-535. doi: 10.3934/proc.2003.2003.526

[20]

Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]