September  2014, 19(7): 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$

1. 

Department of Physics and Astronomy, University of Bologna, and INFN, Via Irnerio 46, Bologna, I-40126, Italy

Received  April 2013 Revised  July 2013 Published  August 2014

We analyse some peculiar properties of the function of the Mittag-Leffler (M-L) type, $e_\alpha(t) := E_\alpha(-t^\alpha)$ for $0<\alpha<1$ and $t>0$, which is known to be completely monotone (CM) with a non-negative spectrum of frequencies and times, suitable to model fractional relaxation processes. We first note that (surprisingly) these two spectra coincide so providing a universal scaling property of this function, not well pointed out in the literature. Furthermore, we consider the problem of approximating our M-L function with simpler CM functions for small and large times. We provide two different sets of elementary CM functions that are asymptotically equivalent to $e_\alpha(t)$ as $t\to 0$ and $t\to +\infty$. The first set is given by the stretched exponential for small times and the power law for large times, following a standard approach. For the second set we chose two rational CM functions in $t^\alpha$, obtained as the Pad\`e Approximants (PA) $[0/1]$ to the convergent series in positive powers (as $t\to 0$) and to the asymptotic series in negative powers (as $t\to \infty$), respectively. From numerical computations we are allowed to the conjecture that the second set provides upper and lower bounds to the Mittag-Leffler function.
Citation: Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267
References:
[1]

Academic Press, New York, 1975.  Google Scholar

[2]

World Scientific, Singapore, 2012. doi: 10.1142/9789814355216.  Google Scholar

[3]

Electron. J. Probab., 15 (2010), 684-709. doi: 10.1214/EJP.v15-762.  Google Scholar

[4]

Eur. Phys. J., Special Topics, 193 (2011) 161-171. [E-print arxiv.org/abs/1106.1761] Google Scholar

[5]

Pure and Appl. Geophys. (PAGEOPH), 91 (1971), 134-147. [Reprinted in Fract. Calc. Appl. Anal.,10 (2007), 309-324.]  Google Scholar

[6]

Riv. Nuovo Cimento (Ser. II), 1 (1971), 161-198. doi: 10.1007/BF02820620.  Google Scholar

[7]

J. Chemical Physics, 10 (1942), 98-105. doi: 10.1063/1.1723677.  Google Scholar

[8]

The Principia Press, Bloomington, Indiana, 1936. Google Scholar

[9]

Springer, Lecture Notes in Mathematics No 2004, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[10]

Nauka, Moscow., 1966 [in Russian]. Google Scholar

[11]

Vol. III. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[12]

Vol. II, Second Edition, Wiley, New York, 1971.  Google Scholar

[13]

{First Annual Report, NASA/TM-2002-211914}, Gleen Research Center, 2002, pp. XIV - 121. Google Scholar

[14]

Fract. Calc. Appl. Anal., 5 (2002), 491-518.  Google Scholar

[15]

in Fractals and Fractional Calculus in Continuum Mechanics, (eds. A. Carpinteri and F. Mainardi), Springer Verlag, Wien, 1997, pp. 223-276. [E-print arxiv.org/abs/0805.3823]  Google Scholar

[16]

J. Appl. Phys., 18 (1947), 212-221. doi: 10.1063/1.1697606.  Google Scholar

[17]

World Scientific, Singapore, 2000. Google Scholar

[18]

Ann. Math., 31 (1930), 479-528. doi: 10.2307/1968241.  Google Scholar

[19]

Fract. Calc. Appl. Anal., 16 (2013), 378-404. doi: 10.2478/s13540-013-0024-9.  Google Scholar

[20]

Differential and Integral Equations, 8 (1995), 993-1011.  Google Scholar

[21]

Chapman and Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203487372.  Google Scholar

[22]

Elsevier, Amsterdam, 2006.  Google Scholar

[23]

Longman & J. Wiley, Harlow - New York, 1994.  Google Scholar

[24]

Comp. Math. Appl., 59 (2010), 1885-1895. doi: 10.1016/j.camwa.2009.08.025.  Google Scholar

[25]

In American Institute of Physics - Conf. Proc., 1301 (2010), 597-613. doi: 10.1063/1.3526661.  Google Scholar

[26]

World Scientific, Singapore, 2012.  Google Scholar

[27]

Begell House Publishers, Connecticut, 2006. Google Scholar

[28]

Imperial College Press, London and World Scientific, Singapore, 2010. doi: 10.1142/9781848163300.  Google Scholar

[29]

Fract. Calc. Appl. Anal., 10 (2007), 269-308.  Google Scholar

[30]

Theory and Algorithmic Tables, Ellis Horwood, Chichester, 1983.  Google Scholar

[31]

Springer, New York, 2008. doi: 10.1007/978-0-387-75894-7.  Google Scholar

[32]

Wiley Eastern Ltd, New Delhi, 1978.  Google Scholar

[33]

Springer Verlag, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar

[34]

Integral Transforms and Special Functions, 12 (2001), 389-402. doi: 10.1080/10652460108819360.  Google Scholar

[35]

Academic Press, San Diego, 1999.  Google Scholar

[36]

Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, Matlab File Exchange www.mathworks.com/matlabcentral/fileexchange, 2006. Google Scholar

[37]

Bull. Amer. Math. Soc., 54 (1948), 1115-1116. doi: 10.1090/S0002-9904-1948-09132-7.  Google Scholar

[38]

Gordon and Breach, Amsterdam, 1993. [English translation and revised version from the Russian edition, Integrals and Derivatives of Fractional Order and Some of Their Applications Nauka i Tekhnika, Minsk, 1987]  Google Scholar

[39]

Fract. Calc. Appl. Anal., 15 (2012), 426-450. doi: 10.2478/s13540-012-0031-2.  Google Scholar

[40]

Vol. I. Holomorphic Functions, Nordhoff, Groningen, 1960.  Google Scholar

[41]

2-nd ed., De Gruyter, Berlin, 2012. doi: 10.1515/9783110269338.  Google Scholar

[42]

Electron. J. Probab., 19 (2014), 1-25. [E-print arXiv:1310.1888] doi: 10.1214/EJP.v19-3058.  Google Scholar

[43]

South Asian Publishers, New Delhi and Madras, 1982.  Google Scholar

[44]

Sbornik Mathematics, 198 (2007), 1011-1023. doi: 10.1070/SM2007v198n07ABEH003871.  Google Scholar

[45]

Springer, Berlin, 2010. doi: 10.1007/978-3-642-14003-7.  Google Scholar

[46]

Integral Transforms and Special Functions, 21 (2010), 797-814. doi: 10.1080/10652461003675737.  Google Scholar

[47]

Springer, Berlin, 2013. doi: 10.1007/978-3-642-33911-0.  Google Scholar

[48]

Constructive Approximation, 18 (2002), 355-385. doi: 10.1007/s00365-001-0019-3.  Google Scholar

[49]

E-print arXiv:1310.5592 [math.CA] (2013), pp. 17. Google Scholar

show all references

References:
[1]

Academic Press, New York, 1975.  Google Scholar

[2]

World Scientific, Singapore, 2012. doi: 10.1142/9789814355216.  Google Scholar

[3]

Electron. J. Probab., 15 (2010), 684-709. doi: 10.1214/EJP.v15-762.  Google Scholar

[4]

Eur. Phys. J., Special Topics, 193 (2011) 161-171. [E-print arxiv.org/abs/1106.1761] Google Scholar

[5]

Pure and Appl. Geophys. (PAGEOPH), 91 (1971), 134-147. [Reprinted in Fract. Calc. Appl. Anal.,10 (2007), 309-324.]  Google Scholar

[6]

Riv. Nuovo Cimento (Ser. II), 1 (1971), 161-198. doi: 10.1007/BF02820620.  Google Scholar

[7]

J. Chemical Physics, 10 (1942), 98-105. doi: 10.1063/1.1723677.  Google Scholar

[8]

The Principia Press, Bloomington, Indiana, 1936. Google Scholar

[9]

Springer, Lecture Notes in Mathematics No 2004, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[10]

Nauka, Moscow., 1966 [in Russian]. Google Scholar

[11]

Vol. III. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[12]

Vol. II, Second Edition, Wiley, New York, 1971.  Google Scholar

[13]

{First Annual Report, NASA/TM-2002-211914}, Gleen Research Center, 2002, pp. XIV - 121. Google Scholar

[14]

Fract. Calc. Appl. Anal., 5 (2002), 491-518.  Google Scholar

[15]

in Fractals and Fractional Calculus in Continuum Mechanics, (eds. A. Carpinteri and F. Mainardi), Springer Verlag, Wien, 1997, pp. 223-276. [E-print arxiv.org/abs/0805.3823]  Google Scholar

[16]

J. Appl. Phys., 18 (1947), 212-221. doi: 10.1063/1.1697606.  Google Scholar

[17]

World Scientific, Singapore, 2000. Google Scholar

[18]

Ann. Math., 31 (1930), 479-528. doi: 10.2307/1968241.  Google Scholar

[19]

Fract. Calc. Appl. Anal., 16 (2013), 378-404. doi: 10.2478/s13540-013-0024-9.  Google Scholar

[20]

Differential and Integral Equations, 8 (1995), 993-1011.  Google Scholar

[21]

Chapman and Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203487372.  Google Scholar

[22]

Elsevier, Amsterdam, 2006.  Google Scholar

[23]

Longman & J. Wiley, Harlow - New York, 1994.  Google Scholar

[24]

Comp. Math. Appl., 59 (2010), 1885-1895. doi: 10.1016/j.camwa.2009.08.025.  Google Scholar

[25]

In American Institute of Physics - Conf. Proc., 1301 (2010), 597-613. doi: 10.1063/1.3526661.  Google Scholar

[26]

World Scientific, Singapore, 2012.  Google Scholar

[27]

Begell House Publishers, Connecticut, 2006. Google Scholar

[28]

Imperial College Press, London and World Scientific, Singapore, 2010. doi: 10.1142/9781848163300.  Google Scholar

[29]

Fract. Calc. Appl. Anal., 10 (2007), 269-308.  Google Scholar

[30]

Theory and Algorithmic Tables, Ellis Horwood, Chichester, 1983.  Google Scholar

[31]

Springer, New York, 2008. doi: 10.1007/978-0-387-75894-7.  Google Scholar

[32]

Wiley Eastern Ltd, New Delhi, 1978.  Google Scholar

[33]

Springer Verlag, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar

[34]

Integral Transforms and Special Functions, 12 (2001), 389-402. doi: 10.1080/10652460108819360.  Google Scholar

[35]

Academic Press, San Diego, 1999.  Google Scholar

[36]

Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, Matlab File Exchange www.mathworks.com/matlabcentral/fileexchange, 2006. Google Scholar

[37]

Bull. Amer. Math. Soc., 54 (1948), 1115-1116. doi: 10.1090/S0002-9904-1948-09132-7.  Google Scholar

[38]

Gordon and Breach, Amsterdam, 1993. [English translation and revised version from the Russian edition, Integrals and Derivatives of Fractional Order and Some of Their Applications Nauka i Tekhnika, Minsk, 1987]  Google Scholar

[39]

Fract. Calc. Appl. Anal., 15 (2012), 426-450. doi: 10.2478/s13540-012-0031-2.  Google Scholar

[40]

Vol. I. Holomorphic Functions, Nordhoff, Groningen, 1960.  Google Scholar

[41]

2-nd ed., De Gruyter, Berlin, 2012. doi: 10.1515/9783110269338.  Google Scholar

[42]

Electron. J. Probab., 19 (2014), 1-25. [E-print arXiv:1310.1888] doi: 10.1214/EJP.v19-3058.  Google Scholar

[43]

South Asian Publishers, New Delhi and Madras, 1982.  Google Scholar

[44]

Sbornik Mathematics, 198 (2007), 1011-1023. doi: 10.1070/SM2007v198n07ABEH003871.  Google Scholar

[45]

Springer, Berlin, 2010. doi: 10.1007/978-3-642-14003-7.  Google Scholar

[46]

Integral Transforms and Special Functions, 21 (2010), 797-814. doi: 10.1080/10652461003675737.  Google Scholar

[47]

Springer, Berlin, 2013. doi: 10.1007/978-3-642-33911-0.  Google Scholar

[48]

Constructive Approximation, 18 (2002), 355-385. doi: 10.1007/s00365-001-0019-3.  Google Scholar

[49]

E-print arXiv:1310.5592 [math.CA] (2013), pp. 17. Google Scholar

[1]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[2]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[3]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[4]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[5]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[8]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[9]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[10]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[11]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[12]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[13]

Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021023

[14]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[15]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[16]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[17]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[18]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[19]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[20]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (806)
  • HTML views (0)
  • Cited by (44)

Other articles
by authors

[Back to Top]