-
Previous Article
Onset of convection in rotating porous layers via a new approach
- DCDS-B Home
- This Issue
-
Next Article
Identification problems related to cylindrical dielectrics **in presence of polarization**
On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$
1. | Department of Physics and Astronomy, University of Bologna, and INFN, Via Irnerio 46, Bologna, I-40126, Italy |
References:
[1] |
G. A. Baker, Essentials of Padè Approximants, Academic Press, New York, 1975. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, World Scientific, Singapore, 2012.
doi: 10.1142/9789814355216. |
[3] |
L. Beghin and E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab., 15 (2010), 684-709.
doi: 10.1214/EJP.v15-762. |
[4] |
E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J., Special Topics, 193 (2011) 161-171. [E-print arxiv.org/abs/1106.1761] |
[5] |
M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure and Appl. Geophys. (PAGEOPH), 91 (1971), 134-147. [Reprinted in Fract. Calc. Appl. Anal.,10 (2007), 309-324.] |
[6] |
M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1 (1971), 161-198.
doi: 10.1007/BF02820620. |
[7] |
K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics, II. Direct current characteristics, J. Chemical Physics, 10 (1942), 98-105.
doi: 10.1063/1.1723677. |
[8] |
H. T. Davis, The Theory of Linear Operators, The Principia Press, Bloomington, Indiana, 1936. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Lecture Notes in Mathematics No 2004, Heidelberg, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
M. M. Dzherbashyan, , Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow., 1966 [in Russian]. |
[11] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. III. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[12] |
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Second Edition, Wiley, New York, 1971. |
[13] |
A. Freed, K. Diethelm and Y. Luchko, Fractional-order Viscoelasticity (FOV): Constitutive Development using the Fractional Calculus, {First Annual Report, NASA/TM-2002-211914}, Gleen Research Center, 2002, pp. XIV - 121. |
[14] |
R. Gorenflo, J. Loutchko and Y. Luchko, Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal., 5 (2002), 491-518. |
[15] |
R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, (eds. A. Carpinteri and F. Mainardi), Springer Verlag, Wien, 1997, pp. 223-276. [E-print arxiv.org/abs/0805.3823] |
[16] |
B. Gross, On creep and relaxation, J. Appl. Phys., 18 (1947), 212-221.
doi: 10.1063/1.1697606. |
[17] |
R. Hilfer (editor), Fractional Calculus, Applications in Physics, World Scientific, Singapore, 2000. |
[18] |
E. Hille and J. D. Tamarkin, On the theory of linear integral equations, Ann. Math., 31 (1930), 479-528.
doi: 10.2307/1968241. |
[19] |
A. A. Kilbas, A . A. Koroleva and S. V. Rogosin, Multi-parametric Mittag-Leffler functions and their extensions, Fract. Calc. Appl. Anal., 16 (2013), 378-404.
doi: 10.2478/s13540-013-0024-9. |
[20] |
A. A. Kilbas and M. Saigo, On solution of integral equations of Abel-Volterra type, Differential and Integral Equations, 8 (1995), 993-1011. |
[21] |
A. A. Kilbas and M. Saigo, $H$-Transforms. Theory and Applications, Chapman and Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203487372. |
[22] |
A. A. Kilbas, H. M Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[23] |
V. Kiryakova, Generalized Fractional Calculus and Applications, Longman & J. Wiley, Harlow - New York, 1994. |
[24] |
V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Comp. Math. Appl., 59 (2010), 1885-1895.
doi: 10.1016/j.camwa.2009.08.025. |
[25] |
V. Kiryakova and Y. Luchko, The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis, In American Institute of Physics - Conf. Proc., 1301 (2010), 597-613.
doi: 10.1063/1.3526661. |
[26] |
J. Klafter, S. C. Lim and R. Metzler (Editors), Fractional Dynamics, Recent Advances, World Scientific, Singapore, 2012. |
[27] |
R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut, 2006. |
[28] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London and World Scientific, Singapore, 2010.
doi: 10.1142/9781848163300. |
[29] |
F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal., 10 (2007), 269-308. |
[30] |
O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables, Ellis Horwood, Chichester, 1983. |
[31] |
A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008.
doi: 10.1007/978-0-387-75894-7. |
[32] |
A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Wiley Eastern Ltd, New Delhi, 1978. |
[33] |
A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer Verlag, New York, 2010.
doi: 10.1007/978-1-4419-0916-9. |
[34] |
K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transforms and Special Functions, 12 (2001), 389-402.
doi: 10.1080/10652460108819360. |
[35] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[36] |
I. Podlubny, Mittag-Leffler function, Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, Matlab File Exchange www.mathworks.com/matlabcentral/fileexchange, 2006. |
[37] |
H. Pollard, The completely monotonic character of the Mittag-Leffler function $E_\alpha (-x)$, Bull. Amer. Math. Soc., 54 (1948), 1115-1116.
doi: 10.1090/S0002-9904-1948-09132-7. |
[38] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1993. [English translation and revised version from the Russian edition, Integrals and Derivatives of Fractional Order and Some of Their Applications Nauka i Tekhnika, Minsk, 1987] |
[39] |
T. Sandev, R. Metzler and Z. Tomovski, Velocity and displacement correlation functions for fractional generalized Langevin equations, Fract. Calc. Appl. Anal., 15 (2012), 426-450.
doi: 10.2478/s13540-012-0031-2. |
[40] |
G. Sansone and J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable, Vol. I. Holomorphic Functions, Nordhoff, Groningen, 1960. |
[41] |
R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications, 2-nd ed., De Gruyter, Berlin, 2012.
doi: 10.1515/9783110269338. |
[42] |
T. Simon, Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25. [E-print arXiv:1310.1888]
doi: 10.1214/EJP.v19-3058. |
[43] |
H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982. |
[44] |
A. P. Starovoitov and N. A. Starovoitova, Padè approximants of the Mittag-Leffler functions, Sbornik Mathematics, 198 (2007), 1011-1023.
doi: 10.1070/SM2007v198n07ABEH003871. |
[45] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, 2010.
doi: 10.1007/978-3-642-14003-7. |
[46] |
Z. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms and Special Functions, 21 (2010), 797-814.
doi: 10.1080/10652461003675737. |
[47] |
V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Springer, Berlin, 2013.
doi: 10.1007/978-3-642-33911-0. |
[48] |
R. Wong and Y.-Q Zhao, Exponential asymptotics of the Mittag-Leffler function, Constructive Approximation, 18 (2002), 355-385.
doi: 10.1007/s00365-001-0019-3. |
[49] |
C. Zeng and Y.-Q. Chen, Global Padè approximations for the generalized Mittag-Leffler function and its inverse, E-print arXiv:1310.5592 [math.CA] (2013), pp. 17. |
show all references
References:
[1] |
G. A. Baker, Essentials of Padè Approximants, Academic Press, New York, 1975. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, World Scientific, Singapore, 2012.
doi: 10.1142/9789814355216. |
[3] |
L. Beghin and E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab., 15 (2010), 684-709.
doi: 10.1214/EJP.v15-762. |
[4] |
E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J., Special Topics, 193 (2011) 161-171. [E-print arxiv.org/abs/1106.1761] |
[5] |
M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure and Appl. Geophys. (PAGEOPH), 91 (1971), 134-147. [Reprinted in Fract. Calc. Appl. Anal.,10 (2007), 309-324.] |
[6] |
M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1 (1971), 161-198.
doi: 10.1007/BF02820620. |
[7] |
K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics, II. Direct current characteristics, J. Chemical Physics, 10 (1942), 98-105.
doi: 10.1063/1.1723677. |
[8] |
H. T. Davis, The Theory of Linear Operators, The Principia Press, Bloomington, Indiana, 1936. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Lecture Notes in Mathematics No 2004, Heidelberg, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
M. M. Dzherbashyan, , Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow., 1966 [in Russian]. |
[11] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. III. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[12] |
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Second Edition, Wiley, New York, 1971. |
[13] |
A. Freed, K. Diethelm and Y. Luchko, Fractional-order Viscoelasticity (FOV): Constitutive Development using the Fractional Calculus, {First Annual Report, NASA/TM-2002-211914}, Gleen Research Center, 2002, pp. XIV - 121. |
[14] |
R. Gorenflo, J. Loutchko and Y. Luchko, Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal., 5 (2002), 491-518. |
[15] |
R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, (eds. A. Carpinteri and F. Mainardi), Springer Verlag, Wien, 1997, pp. 223-276. [E-print arxiv.org/abs/0805.3823] |
[16] |
B. Gross, On creep and relaxation, J. Appl. Phys., 18 (1947), 212-221.
doi: 10.1063/1.1697606. |
[17] |
R. Hilfer (editor), Fractional Calculus, Applications in Physics, World Scientific, Singapore, 2000. |
[18] |
E. Hille and J. D. Tamarkin, On the theory of linear integral equations, Ann. Math., 31 (1930), 479-528.
doi: 10.2307/1968241. |
[19] |
A. A. Kilbas, A . A. Koroleva and S. V. Rogosin, Multi-parametric Mittag-Leffler functions and their extensions, Fract. Calc. Appl. Anal., 16 (2013), 378-404.
doi: 10.2478/s13540-013-0024-9. |
[20] |
A. A. Kilbas and M. Saigo, On solution of integral equations of Abel-Volterra type, Differential and Integral Equations, 8 (1995), 993-1011. |
[21] |
A. A. Kilbas and M. Saigo, $H$-Transforms. Theory and Applications, Chapman and Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203487372. |
[22] |
A. A. Kilbas, H. M Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[23] |
V. Kiryakova, Generalized Fractional Calculus and Applications, Longman & J. Wiley, Harlow - New York, 1994. |
[24] |
V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Comp. Math. Appl., 59 (2010), 1885-1895.
doi: 10.1016/j.camwa.2009.08.025. |
[25] |
V. Kiryakova and Y. Luchko, The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis, In American Institute of Physics - Conf. Proc., 1301 (2010), 597-613.
doi: 10.1063/1.3526661. |
[26] |
J. Klafter, S. C. Lim and R. Metzler (Editors), Fractional Dynamics, Recent Advances, World Scientific, Singapore, 2012. |
[27] |
R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut, 2006. |
[28] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London and World Scientific, Singapore, 2010.
doi: 10.1142/9781848163300. |
[29] |
F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal., 10 (2007), 269-308. |
[30] |
O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables, Ellis Horwood, Chichester, 1983. |
[31] |
A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008.
doi: 10.1007/978-0-387-75894-7. |
[32] |
A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Wiley Eastern Ltd, New Delhi, 1978. |
[33] |
A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer Verlag, New York, 2010.
doi: 10.1007/978-1-4419-0916-9. |
[34] |
K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transforms and Special Functions, 12 (2001), 389-402.
doi: 10.1080/10652460108819360. |
[35] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[36] |
I. Podlubny, Mittag-Leffler function, Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, Matlab File Exchange www.mathworks.com/matlabcentral/fileexchange, 2006. |
[37] |
H. Pollard, The completely monotonic character of the Mittag-Leffler function $E_\alpha (-x)$, Bull. Amer. Math. Soc., 54 (1948), 1115-1116.
doi: 10.1090/S0002-9904-1948-09132-7. |
[38] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1993. [English translation and revised version from the Russian edition, Integrals and Derivatives of Fractional Order and Some of Their Applications Nauka i Tekhnika, Minsk, 1987] |
[39] |
T. Sandev, R. Metzler and Z. Tomovski, Velocity and displacement correlation functions for fractional generalized Langevin equations, Fract. Calc. Appl. Anal., 15 (2012), 426-450.
doi: 10.2478/s13540-012-0031-2. |
[40] |
G. Sansone and J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable, Vol. I. Holomorphic Functions, Nordhoff, Groningen, 1960. |
[41] |
R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications, 2-nd ed., De Gruyter, Berlin, 2012.
doi: 10.1515/9783110269338. |
[42] |
T. Simon, Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25. [E-print arXiv:1310.1888]
doi: 10.1214/EJP.v19-3058. |
[43] |
H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982. |
[44] |
A. P. Starovoitov and N. A. Starovoitova, Padè approximants of the Mittag-Leffler functions, Sbornik Mathematics, 198 (2007), 1011-1023.
doi: 10.1070/SM2007v198n07ABEH003871. |
[45] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, 2010.
doi: 10.1007/978-3-642-14003-7. |
[46] |
Z. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms and Special Functions, 21 (2010), 797-814.
doi: 10.1080/10652461003675737. |
[47] |
V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Springer, Berlin, 2013.
doi: 10.1007/978-3-642-33911-0. |
[48] |
R. Wong and Y.-Q Zhao, Exponential asymptotics of the Mittag-Leffler function, Constructive Approximation, 18 (2002), 355-385.
doi: 10.1007/s00365-001-0019-3. |
[49] |
C. Zeng and Y.-Q. Chen, Global Padè approximations for the generalized Mittag-Leffler function and its inverse, E-print arXiv:1310.5592 [math.CA] (2013), pp. 17. |
[1] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[2] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050 |
[3] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058 |
[4] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 |
[5] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[6] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428 |
[7] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[8] |
Ricardo Almeida, M. Luísa Morgado. Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 519-534. doi: 10.3934/dcdss.2021149 |
[9] |
Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443 |
[10] |
Yan Gao. Monotonicity of entropy for unimodal real quadratic rational maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022101 |
[11] |
Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 |
[12] |
Frank Neubrander, Koray Özer, Teresa Sandmaier. Rational approximations of semigroups without scaling and squaring. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5305-5317. doi: 10.3934/dcds.2013.33.5305 |
[13] |
Khashayar Filom, Kevin M. Pilgrim. On the non-monotonicity of entropy for a class of real quadratic rational maps. Journal of Modern Dynamics, 2020, 16: 225-254. doi: 10.3934/jmd.2020008 |
[14] |
Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012 |
[15] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[16] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[17] |
Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070 |
[18] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations and Control Theory, 2022, 11 (1) : 95-124. doi: 10.3934/eect.2020104 |
[19] |
Flank D. M. Bezerra, Alexandre N. Carvalho, Marcelo J. D. Nascimento. Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4221-4255. doi: 10.3934/dcdsb.2020095 |
[20] |
Frank Neubrander, Koray Özer, Lee Windsperger. On subdiagonal rational Padé approximations and the Brenner-Thomée approximation theorem for operator semigroups. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3565-3579. doi: 10.3934/dcdss.2020238 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]