• Previous Article
    q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics
  • DCDS-B Home
  • This Issue
  • Next Article
    On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$
September  2014, 19(7): 2279-2296. doi: 10.3934/dcdsb.2014.19.2279

Onset of convection in rotating porous layers via a new approach

1. 

University of Naples Federico II, Department of Mathematics and Applications, "Renato Caccioppoli", Via Cinzia 80126. Naples, Italy

Received  April 2013 Revised  September 2013 Published  August 2014

Via a new approach, ternary fluid mixtures saturating rotating horizontal porous layers, heated from below and salted from above and below, are investigated. With or without the presence of Brinkman viscosity, the absence of subcritical instabilities is shown together with the coincidence of linear and non-linear global stability of the thermal conduction solution. The stability-instability conditions are found to be given by simple algebraic conditions in closed forms.
Citation: Salvatore Rionero. Onset of convection in rotating porous layers via a new approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2279-2296. doi: 10.3934/dcdsb.2014.19.2279
References:
[1]

F. Capone and R. De Luca, Onset of convection for ternary fluid mixtures saturating horizontal porous layers with large pores,, Rend. Lincei Mat. Appl., 23 (2012), 405.  doi: 10.4171/RLM/636.  Google Scholar

[2]

F. Capone and R. De Luca, Ultimately boundedness and stability of triply diffusive mixtures in rotating porous layers under the action of Brinkman law,, Int. J. Nonlinear Mech., 47 (2012), 799.   Google Scholar

[3]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,, Dover, (1981).   Google Scholar

[4]

J. Flavin and S. Rionero, Qualitative Estimates for Partial Differential Equations,, An Introduction. CRC Press, (1996).   Google Scholar

[5]

F. R. Gantmaker, The Theory Of Matrices,, Vol 1-2 AMS (Chelsea Publishing), (2000), 1.   Google Scholar

[6]

M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes,, Wiley, (2012).  doi: 10.1002/9781118342411.  Google Scholar

[7]

A. Lopez, L. Romero and A. Pearlstein, Effect of rigid boundaries on the onset of convection in a triply diffusive fluid layer,, Phys. Fluids A, 2 (1990), 897.   Google Scholar

[8]

D. R. Merkin, Introduction to the Theory of Stability,, Texts in Applied Mathematics, 24 (1997).   Google Scholar

[9]

D. A. Nield and A. Bejan, Conduction in Porous Media,, 2nd edition, (1999).  doi: 10.1007/978-1-4757-3033-3.  Google Scholar

[10]

R. A. Noutly and D. G. Leaist, Quaternary diffusion in acqueous $KCl-KH_2PO_4-H_3PO_4$ mixtures,, J. Phys. Chem., 91 (1987), 1655.   Google Scholar

[11]

A. J. Pearlstein, R. M. Harris and G. Terrones, The onset of convective instability in a triply diffusive fluid layer,, J.Fluid Mech., 202 (1989), 443.  doi: 10.1017/S0022112089001242.  Google Scholar

[12]

S. Rionero, Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures,, Phys. Fluids, 24 (2012).  doi: 10.1063/1.4757858.  Google Scholar

[13]

S. Rionero, Long time behaviour of multicomponent fluid mixture in porous media,, Int. J. of Eng. Sci., 48 (2010), 1519.  doi: 10.1016/j.ijengsci.2010.07.007.  Google Scholar

[14]

S. Rionero, Global nonlinear stability for a triply diffusive-convection in a porous layer,, Contin. Mech. Thermodyn., 24 (2012), 629.  doi: 10.1007/s00161-011-0219-4.  Google Scholar

[15]

S. Rionero, On the nonlinear stability of ternary porous media via only one necessary and sufficient algebraic condition,, (submitted to EECT, ().   Google Scholar

[16]

S. Rionero, Symmetries and skew-symmetries against onset of convection in porous layers salted from above and below,, Int. J. Non-linear Mech., 47 (2012), 61.   Google Scholar

[17]

S. Rionero, Multicomponent diffusive-convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities and global nonlinear stability for any number of salts,, Phys. Fluids, 25 (2013).  doi: 10.1063/1.4802629.  Google Scholar

[18]

B. Straughan, The Energy Method, Stability and Nonlinear Convection,, Second edition. Applied Mathematical Sciences, (2004).  doi: 10.1007/978-0-387-21740-6.  Google Scholar

[19]

B. Straughan, Stability and Wave Motion in Porous Media,, Applied Mathematical Sciences, (2008).   Google Scholar

[20]

B. Straughan and J. Tracey, Multi-component convection-diffusion with internal heating or cooling,, Acta Mechanica, 133 (1999), 219.   Google Scholar

[21]

J. Tracey, Multi-component convection-diffusion in a porous medium,, Continuum Mech. Thermodyn., 8 (1996), 361.   Google Scholar

show all references

References:
[1]

F. Capone and R. De Luca, Onset of convection for ternary fluid mixtures saturating horizontal porous layers with large pores,, Rend. Lincei Mat. Appl., 23 (2012), 405.  doi: 10.4171/RLM/636.  Google Scholar

[2]

F. Capone and R. De Luca, Ultimately boundedness and stability of triply diffusive mixtures in rotating porous layers under the action of Brinkman law,, Int. J. Nonlinear Mech., 47 (2012), 799.   Google Scholar

[3]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,, Dover, (1981).   Google Scholar

[4]

J. Flavin and S. Rionero, Qualitative Estimates for Partial Differential Equations,, An Introduction. CRC Press, (1996).   Google Scholar

[5]

F. R. Gantmaker, The Theory Of Matrices,, Vol 1-2 AMS (Chelsea Publishing), (2000), 1.   Google Scholar

[6]

M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes,, Wiley, (2012).  doi: 10.1002/9781118342411.  Google Scholar

[7]

A. Lopez, L. Romero and A. Pearlstein, Effect of rigid boundaries on the onset of convection in a triply diffusive fluid layer,, Phys. Fluids A, 2 (1990), 897.   Google Scholar

[8]

D. R. Merkin, Introduction to the Theory of Stability,, Texts in Applied Mathematics, 24 (1997).   Google Scholar

[9]

D. A. Nield and A. Bejan, Conduction in Porous Media,, 2nd edition, (1999).  doi: 10.1007/978-1-4757-3033-3.  Google Scholar

[10]

R. A. Noutly and D. G. Leaist, Quaternary diffusion in acqueous $KCl-KH_2PO_4-H_3PO_4$ mixtures,, J. Phys. Chem., 91 (1987), 1655.   Google Scholar

[11]

A. J. Pearlstein, R. M. Harris and G. Terrones, The onset of convective instability in a triply diffusive fluid layer,, J.Fluid Mech., 202 (1989), 443.  doi: 10.1017/S0022112089001242.  Google Scholar

[12]

S. Rionero, Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures,, Phys. Fluids, 24 (2012).  doi: 10.1063/1.4757858.  Google Scholar

[13]

S. Rionero, Long time behaviour of multicomponent fluid mixture in porous media,, Int. J. of Eng. Sci., 48 (2010), 1519.  doi: 10.1016/j.ijengsci.2010.07.007.  Google Scholar

[14]

S. Rionero, Global nonlinear stability for a triply diffusive-convection in a porous layer,, Contin. Mech. Thermodyn., 24 (2012), 629.  doi: 10.1007/s00161-011-0219-4.  Google Scholar

[15]

S. Rionero, On the nonlinear stability of ternary porous media via only one necessary and sufficient algebraic condition,, (submitted to EECT, ().   Google Scholar

[16]

S. Rionero, Symmetries and skew-symmetries against onset of convection in porous layers salted from above and below,, Int. J. Non-linear Mech., 47 (2012), 61.   Google Scholar

[17]

S. Rionero, Multicomponent diffusive-convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities and global nonlinear stability for any number of salts,, Phys. Fluids, 25 (2013).  doi: 10.1063/1.4802629.  Google Scholar

[18]

B. Straughan, The Energy Method, Stability and Nonlinear Convection,, Second edition. Applied Mathematical Sciences, (2004).  doi: 10.1007/978-0-387-21740-6.  Google Scholar

[19]

B. Straughan, Stability and Wave Motion in Porous Media,, Applied Mathematical Sciences, (2008).   Google Scholar

[20]

B. Straughan and J. Tracey, Multi-component convection-diffusion with internal heating or cooling,, Acta Mechanica, 133 (1999), 219.   Google Scholar

[21]

J. Tracey, Multi-component convection-diffusion in a porous medium,, Continuum Mech. Thermodyn., 8 (1996), 361.   Google Scholar

[1]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[2]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[3]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[4]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[5]

Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111

[6]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[7]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[8]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[9]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[10]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[11]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[12]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[13]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[14]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[15]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[16]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

[17]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[18]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[19]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[20]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]