September  2014, 19(7): 2297-2312. doi: 10.3934/dcdsb.2014.19.2297

q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics

1. 

Australian Research Council Centre of Excellence for Mathematics & Statistics of Complex Systems, School of Mathematics, The University of New South Wales, Sydney, NSW2052, Australia

2. 

Department of Mathematics & Research Centre of Applied Mathematics (CIRAM), University of Bologna, Italy

Received  March 2013 Revised  March 2014 Published  August 2014

Integrable reductions in non-isothermal spatial gasdynamics are isolated corresponding to q-Gaussian density distributions. The availability of a Tsallis parameter q in the reductions permits the construction via a Madelung transformation of wave packet solutions of a class of associated q-logarithmic nonlinear Schrödinger equations involving a de Broglie-Bohm quantum potential term.
Citation: Colin Rogers, Tommaso Ruggeri. q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2297-2312. doi: 10.3934/dcdsb.2014.19.2297
References:
[1]

I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities,, Bull. Acad. Polon. Sci., 23 (1974), 461.   Google Scholar

[2]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[3]

I. Bialynicki-Birula and J. Mycielski, Gaussons: solitons of the logarithmic Schrödinger equation,, Physica Scripta, 20 (1979), 539.  doi: 10.1088/0031-8949/20/3-4/033.  Google Scholar

[4]

D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden' variables: I and II,, Phys. Rev., 85 (1952), 166.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[5]

D. N. Christodoulidis, T. H. Coskun and R. I. Joseph, Incoherent spatial solitons in saturable nonlinear media,, Opt. Lett., 22 (1997), 1080.  doi: 10.1364/OL.22.001080.  Google Scholar

[6]

S. Curilef, A. R. Plastino and A. Plastino, Tsallis' maximum entropy ansatz leading to exact analytic time dependent wave packet solutions of a nonlinear Schrödinger equation,, Physica A, 392 (2013), 2631.  doi: 10.1016/j.physa.2012.12.041.  Google Scholar

[7]

L. de Broglie, The wave nature of the electron, Nobel Lectures,, (1965), (1965), 244.   Google Scholar

[8]

F. J. Dyson, Dynamics of a spinning gas cloud,, J. Math. Mech., 18 (1968), 91.  doi: 10.1512/iumj.1969.18.18009.  Google Scholar

[9]

B. Gaffet, Expanding gas clouds of ellipsoidal shape: New exact solutions,, J. Fluid Mech., 325 (1996), 113.  doi: 10.1017/S0022112096008051.  Google Scholar

[10]

B. Gaffet, Spinning gas clouds with precession: A new formulation,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/16/165207.  Google Scholar

[11]

M. Gell-Mann and C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications,, Oxford University Press, (2004).   Google Scholar

[12]

I. B. Gornushkin, S. V. Shabanov, N. Omenetto and J. D. Winefordner, Nonisothermal asymmetric expansion of laser induced plasmas into a vacuum,, J. Appl. Phys., 100 (2006).  doi: 10.1063/1.2345460.  Google Scholar

[13]

T. Hansson, D. Anderson and M. Lisak, Soliton interaction in logarithmically saturable media,, Opt. Commun., 283 (2010), 318.  doi: 10.1016/j.optcom.2009.09.034.  Google Scholar

[14]

K. Królikowski, D. Edmundson and O. Bang, Unified model for partially coherent solutions in logarithmically nonlinear media,, Phys. Rev. E, 61 (2000), 3122.   Google Scholar

[15]

J. H. Lee, O. K. Pashaev, C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation in cold plasma physics: application of Bäcklund transformations and superposition principles,, J. Plasma Phys., 73 (2007), 257.  doi: 10.1017/S0022377806004648.  Google Scholar

[16]

E. Madelung, Quartentheorie in Hydrodynamischen form,, Zeit für Phys., 40 (1926), 322.   Google Scholar

[17]

B. A. Malomed, Soliton Management in Periodic Systems,, Springer, (2006).   Google Scholar

[18]

J. Naudts, Generalised Thermostatistics,, Springer-Verlag London, (2011).  doi: 10.1007/978-0-85729-355-8.  Google Scholar

[19]

F. D. Nobre, M. A. Rego-Monteiro and C. Tsallis, Nonlinear relativistic and quantum equations with a common type of solution,, Phys. Rev. Lett., 106 (2011).  doi: 10.1103/PhysRevLett.106.140601.  Google Scholar

[20]

F. D. Nobre, M. A. Rego-Monteiro and C. Tsallis, A generalised nonlinear Schrödinger equation: Classical field-theoretic approach,, Europhysics Letters, 97 (2012).   Google Scholar

[21]

O. K. Pashaev, J. H. Lee and C. Rogers, Soliton resonances in a generalized nonlinear Schrödinger equation,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/45/452001.  Google Scholar

[22]

R. C. Prim, Steady rotational flow of ideal gases,, J. Rational Mech. Anal, 1 (1952), 425.   Google Scholar

[23]

J. R. Ray, Nonlinear superposition law for generalised Ermakov systems,, Phys. Lett. A, 78 (1980), 4.  doi: 10.1016/0375-9601(80)90789-6.  Google Scholar

[24]

J. L. Reid and J. R. Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion,, J. Math. Phys., 21 (1980), 1583.  doi: 10.1063/1.524625.  Google Scholar

[25]

C. Rogers, C. Hoenselaers and J. R. Ray, On 2+1-dimensional Ermakov systems,, J. Phys. A. Math. & Gen., 26 (1993), 2625.  doi: 10.1088/0305-4470/26/11/012.  Google Scholar

[26]

C. Rogers and W. K. Schief, Multi-component Ermakov systems: Structure and linearization,, J. Math. Anal. Appl., 198 (1996), 194.  doi: 10.1006/jmaa.1996.0076.  Google Scholar

[27]

C. Rogers and H. An, Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory,, Stud. Appl. Math., 125 (2010), 275.  doi: 10.1111/j.1467-9590.2010.00488.x.  Google Scholar

[28]

C. Rogers, B. Malomed, K. Chow and H. An, Ermakov-Ray-Reid systems in nonlinear optics,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/45/455214.  Google Scholar

[29]

C. Rogers and W. K. Schief, The pulsrodon in 2+1-dimensional magnetogasdynamics. Hamiltonian structure and integrability theory,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3622595.  Google Scholar

[30]

C. Rogers and W. K. Schief, On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system,, Nonlinearity, 24 (2011), 3165.  doi: 10.1088/0951-7715/24/11/009.  Google Scholar

[31]

C. Rogers, B. Malomed and H. An, Ermakov-Ray-Reid reductions of variational approximations in nonlinear optics,, Stud. Appl. Math., 129 (2012), 389.  doi: 10.1111/j.1467-9590.2012.00557.x.  Google Scholar

[32]

C. Rogers and H. An, On a 2+1-dimensional Madelung system with logarithmic and de Broglie-Bohm quantum potentials. Ermakov reduction,, Physica Scripta, 84 (2011).   Google Scholar

[33]

C. Rogers, W. K. Schief and W. H. Hui, On complex-lamellar motion of a Prim gas,, J. Math. Anal. Appl., 266 (2002), 55.  doi: 10.1006/jmaa.2001.7685.  Google Scholar

[34]

W. K. Schief, C. Rogers and A. Bassom, Ermakov systems with arbitrary order and dimension: Structure and linearization,, J. Phys. A: Math. Gen., 29 (1996), 903.  doi: 10.1088/0305-4470/29/4/017.  Google Scholar

[35]

W. K. Schief, H. An and C. Rogers, Universal and integrable aspects of an elliptic vortex representation in 2+1-dimensional magnetogasdynamics,, Stud. Appl. Math., 130 (2013), 49.  doi: 10.1111/j.1467-9590.2012.00559.x.  Google Scholar

[36]

A. W. Snyder and J. D. Mitchell, Mighty morphing and spatial solitons and bullets,, Opt. Lett., 22 (1997), 16.  doi: 10.1364/OL.22.000016.  Google Scholar

[37]

C. Tsallis, Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World,, Springer, (2009).   Google Scholar

[38]

W. G. Wagner, H. A. Haus and J. H. Marburger, Large-scale self-trapping of optical beams in the paraxial ray approximation,, Phys. Rev., 175 (1968), 256.  doi: 10.1103/PhysRev.175.256.  Google Scholar

show all references

References:
[1]

I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities,, Bull. Acad. Polon. Sci., 23 (1974), 461.   Google Scholar

[2]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics,, Ann. Phys., 100 (1976), 62.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[3]

I. Bialynicki-Birula and J. Mycielski, Gaussons: solitons of the logarithmic Schrödinger equation,, Physica Scripta, 20 (1979), 539.  doi: 10.1088/0031-8949/20/3-4/033.  Google Scholar

[4]

D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden' variables: I and II,, Phys. Rev., 85 (1952), 166.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[5]

D. N. Christodoulidis, T. H. Coskun and R. I. Joseph, Incoherent spatial solitons in saturable nonlinear media,, Opt. Lett., 22 (1997), 1080.  doi: 10.1364/OL.22.001080.  Google Scholar

[6]

S. Curilef, A. R. Plastino and A. Plastino, Tsallis' maximum entropy ansatz leading to exact analytic time dependent wave packet solutions of a nonlinear Schrödinger equation,, Physica A, 392 (2013), 2631.  doi: 10.1016/j.physa.2012.12.041.  Google Scholar

[7]

L. de Broglie, The wave nature of the electron, Nobel Lectures,, (1965), (1965), 244.   Google Scholar

[8]

F. J. Dyson, Dynamics of a spinning gas cloud,, J. Math. Mech., 18 (1968), 91.  doi: 10.1512/iumj.1969.18.18009.  Google Scholar

[9]

B. Gaffet, Expanding gas clouds of ellipsoidal shape: New exact solutions,, J. Fluid Mech., 325 (1996), 113.  doi: 10.1017/S0022112096008051.  Google Scholar

[10]

B. Gaffet, Spinning gas clouds with precession: A new formulation,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/16/165207.  Google Scholar

[11]

M. Gell-Mann and C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications,, Oxford University Press, (2004).   Google Scholar

[12]

I. B. Gornushkin, S. V. Shabanov, N. Omenetto and J. D. Winefordner, Nonisothermal asymmetric expansion of laser induced plasmas into a vacuum,, J. Appl. Phys., 100 (2006).  doi: 10.1063/1.2345460.  Google Scholar

[13]

T. Hansson, D. Anderson and M. Lisak, Soliton interaction in logarithmically saturable media,, Opt. Commun., 283 (2010), 318.  doi: 10.1016/j.optcom.2009.09.034.  Google Scholar

[14]

K. Królikowski, D. Edmundson and O. Bang, Unified model for partially coherent solutions in logarithmically nonlinear media,, Phys. Rev. E, 61 (2000), 3122.   Google Scholar

[15]

J. H. Lee, O. K. Pashaev, C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation in cold plasma physics: application of Bäcklund transformations and superposition principles,, J. Plasma Phys., 73 (2007), 257.  doi: 10.1017/S0022377806004648.  Google Scholar

[16]

E. Madelung, Quartentheorie in Hydrodynamischen form,, Zeit für Phys., 40 (1926), 322.   Google Scholar

[17]

B. A. Malomed, Soliton Management in Periodic Systems,, Springer, (2006).   Google Scholar

[18]

J. Naudts, Generalised Thermostatistics,, Springer-Verlag London, (2011).  doi: 10.1007/978-0-85729-355-8.  Google Scholar

[19]

F. D. Nobre, M. A. Rego-Monteiro and C. Tsallis, Nonlinear relativistic and quantum equations with a common type of solution,, Phys. Rev. Lett., 106 (2011).  doi: 10.1103/PhysRevLett.106.140601.  Google Scholar

[20]

F. D. Nobre, M. A. Rego-Monteiro and C. Tsallis, A generalised nonlinear Schrödinger equation: Classical field-theoretic approach,, Europhysics Letters, 97 (2012).   Google Scholar

[21]

O. K. Pashaev, J. H. Lee and C. Rogers, Soliton resonances in a generalized nonlinear Schrödinger equation,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/45/452001.  Google Scholar

[22]

R. C. Prim, Steady rotational flow of ideal gases,, J. Rational Mech. Anal, 1 (1952), 425.   Google Scholar

[23]

J. R. Ray, Nonlinear superposition law for generalised Ermakov systems,, Phys. Lett. A, 78 (1980), 4.  doi: 10.1016/0375-9601(80)90789-6.  Google Scholar

[24]

J. L. Reid and J. R. Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion,, J. Math. Phys., 21 (1980), 1583.  doi: 10.1063/1.524625.  Google Scholar

[25]

C. Rogers, C. Hoenselaers and J. R. Ray, On 2+1-dimensional Ermakov systems,, J. Phys. A. Math. & Gen., 26 (1993), 2625.  doi: 10.1088/0305-4470/26/11/012.  Google Scholar

[26]

C. Rogers and W. K. Schief, Multi-component Ermakov systems: Structure and linearization,, J. Math. Anal. Appl., 198 (1996), 194.  doi: 10.1006/jmaa.1996.0076.  Google Scholar

[27]

C. Rogers and H. An, Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory,, Stud. Appl. Math., 125 (2010), 275.  doi: 10.1111/j.1467-9590.2010.00488.x.  Google Scholar

[28]

C. Rogers, B. Malomed, K. Chow and H. An, Ermakov-Ray-Reid systems in nonlinear optics,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/45/455214.  Google Scholar

[29]

C. Rogers and W. K. Schief, The pulsrodon in 2+1-dimensional magnetogasdynamics. Hamiltonian structure and integrability theory,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3622595.  Google Scholar

[30]

C. Rogers and W. K. Schief, On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system,, Nonlinearity, 24 (2011), 3165.  doi: 10.1088/0951-7715/24/11/009.  Google Scholar

[31]

C. Rogers, B. Malomed and H. An, Ermakov-Ray-Reid reductions of variational approximations in nonlinear optics,, Stud. Appl. Math., 129 (2012), 389.  doi: 10.1111/j.1467-9590.2012.00557.x.  Google Scholar

[32]

C. Rogers and H. An, On a 2+1-dimensional Madelung system with logarithmic and de Broglie-Bohm quantum potentials. Ermakov reduction,, Physica Scripta, 84 (2011).   Google Scholar

[33]

C. Rogers, W. K. Schief and W. H. Hui, On complex-lamellar motion of a Prim gas,, J. Math. Anal. Appl., 266 (2002), 55.  doi: 10.1006/jmaa.2001.7685.  Google Scholar

[34]

W. K. Schief, C. Rogers and A. Bassom, Ermakov systems with arbitrary order and dimension: Structure and linearization,, J. Phys. A: Math. Gen., 29 (1996), 903.  doi: 10.1088/0305-4470/29/4/017.  Google Scholar

[35]

W. K. Schief, H. An and C. Rogers, Universal and integrable aspects of an elliptic vortex representation in 2+1-dimensional magnetogasdynamics,, Stud. Appl. Math., 130 (2013), 49.  doi: 10.1111/j.1467-9590.2012.00559.x.  Google Scholar

[36]

A. W. Snyder and J. D. Mitchell, Mighty morphing and spatial solitons and bullets,, Opt. Lett., 22 (1997), 16.  doi: 10.1364/OL.22.000016.  Google Scholar

[37]

C. Tsallis, Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World,, Springer, (2009).   Google Scholar

[38]

W. G. Wagner, H. A. Haus and J. H. Marburger, Large-scale self-trapping of optical beams in the paraxial ray approximation,, Phys. Rev., 175 (1968), 256.  doi: 10.1103/PhysRev.175.256.  Google Scholar

[1]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[2]

Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447-485. doi: 10.3934/jgm.2019023

[3]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[4]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[5]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[6]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[7]

David Lubicz. On a classification of finite statistical tests. Advances in Mathematics of Communications, 2007, 1 (4) : 509-524. doi: 10.3934/amc.2007.1.509

[8]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[9]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[10]

Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121

[11]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[12]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[13]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[14]

Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303

[15]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[16]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[17]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[18]

Alain Miranville, Ulisse Stefanelli, Lev Truskinovsky, Augusto Visintin. Preface: Applications of mathematics to mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : ⅰ-ⅱ. doi: 10.3934/dcdss.201701i

[19]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[20]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]