January  2014, 19(1): 231-256. doi: 10.3934/dcdsb.2014.19.231

Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity

1. 

Département de Mathématiques - Institut Galilée, Université Paris 13, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Received  December 2012 Revised  August 2013 Published  December 2013

We study a one-dimensional parabolic PDE with degenerate diffusion and non-Lipschitz nonlinearity involving the derivative. This evolution equation arises when searching radially symmetric solutions of a chemotaxis model of Patlak-Keller-Segel type. We prove its local in time wellposedness in some appropriate space, a blow-up alternative, regularity results and give an idea of the shape of solutions. A transformed and an approximate problem naturally appear in the way of the proof and are also crucial in [22] in order to study the global behaviour of solutions of the equation for a critical parameter, more precisely to show the existence of a critical mass.
Citation: Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231
References:
[1]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disk,, Topol. Methods Nonlinear Anal., 27 (2006), 133.   Google Scholar

[2]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8$\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods Appl. Sci., 29 (2006), 1563.  doi: 10.1002/mma.743.  Google Scholar

[3]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial differential equations, 35 (2009), 133.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two dimensional Keller-Segel model: Opti- mal critical mass and qualitative properties of solutions,, Electron. J. Differential Equations, 44 (2006), 1.   Google Scholar

[6]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbbR^2$,, Commun. MAth. Sci., 6 (2008), 417.  doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[7]

K. Djie and M. Winkler, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal. TMA, 72 (2010), 1044.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[8]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in R2,, C. R. Math. Acad. Sci. Paris, 339 (2004), 611.  doi: 10.1016/j.crma.2004.08.011.  Google Scholar

[9]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall, (1964).   Google Scholar

[10]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[11]

M. A. Herrero, The mathematics of chemotaxis, handbook of differential equations: Evolutionary equations,, Vol. III, III (2007), 137.  doi: 10.1016/S1874-5717(07)80005-3.  Google Scholar

[12]

M. A. Herrero and L. Sastre, Models of aggregation in dictyostelium discoideum: On the track of spiral waves,, Networks and Heterogeneous Media, 1 (2006), 241.  doi: 10.3934/nhm.2006.1.241.  Google Scholar

[13]

M. A. Herrero and J. L. Velazquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583.  doi: 10.1007/BF01445268.  Google Scholar

[14]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[15]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[16]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, Journal of Differential Equations, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (2018).  doi: 10.1007/978-3-642-18460-4.  Google Scholar

[19]

N. I. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk,, SIAM J. Math. Anal., 40 (): 1852.  doi: 10.1137/080722229.  Google Scholar

[20]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Lunard, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Progress in Nonlinear Differential Equations and their Applications, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[22]

A. Montaru, A semilinear parabolic-elliptic chemotaxis system with critical mass in any space dimension,, (accepted in Nonlinearity , (): 0951.  doi: 10.1088/0951-7715/26/9/2669.  Google Scholar

[23]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biol. Biophys., 15 (1953), 311.  doi: 10.1007/BF02476407.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic,, Appl. Math., 49 (2004), 539.  doi: 10.1007/s10492-004-6431-9.  Google Scholar

[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[27]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts. Birkhäuser Verlag, (2007).   Google Scholar

show all references

References:
[1]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disk,, Topol. Methods Nonlinear Anal., 27 (2006), 133.   Google Scholar

[2]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8$\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods Appl. Sci., 29 (2006), 1563.  doi: 10.1002/mma.743.  Google Scholar

[3]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial differential equations, 35 (2009), 133.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two dimensional Keller-Segel model: Opti- mal critical mass and qualitative properties of solutions,, Electron. J. Differential Equations, 44 (2006), 1.   Google Scholar

[6]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbbR^2$,, Commun. MAth. Sci., 6 (2008), 417.  doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[7]

K. Djie and M. Winkler, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal. TMA, 72 (2010), 1044.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[8]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in R2,, C. R. Math. Acad. Sci. Paris, 339 (2004), 611.  doi: 10.1016/j.crma.2004.08.011.  Google Scholar

[9]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall, (1964).   Google Scholar

[10]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[11]

M. A. Herrero, The mathematics of chemotaxis, handbook of differential equations: Evolutionary equations,, Vol. III, III (2007), 137.  doi: 10.1016/S1874-5717(07)80005-3.  Google Scholar

[12]

M. A. Herrero and L. Sastre, Models of aggregation in dictyostelium discoideum: On the track of spiral waves,, Networks and Heterogeneous Media, 1 (2006), 241.  doi: 10.3934/nhm.2006.1.241.  Google Scholar

[13]

M. A. Herrero and J. L. Velazquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583.  doi: 10.1007/BF01445268.  Google Scholar

[14]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[15]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[16]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, Journal of Differential Equations, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (2018).  doi: 10.1007/978-3-642-18460-4.  Google Scholar

[19]

N. I. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk,, SIAM J. Math. Anal., 40 (): 1852.  doi: 10.1137/080722229.  Google Scholar

[20]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Lunard, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Progress in Nonlinear Differential Equations and their Applications, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[22]

A. Montaru, A semilinear parabolic-elliptic chemotaxis system with critical mass in any space dimension,, (accepted in Nonlinearity , (): 0951.  doi: 10.1088/0951-7715/26/9/2669.  Google Scholar

[23]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biol. Biophys., 15 (1953), 311.  doi: 10.1007/BF02476407.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic,, Appl. Math., 49 (2004), 539.  doi: 10.1007/s10492-004-6431-9.  Google Scholar

[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[27]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts. Birkhäuser Verlag, (2007).   Google Scholar

[1]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[2]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[3]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[4]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[5]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[6]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[7]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[8]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

[9]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[10]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[11]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[12]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[13]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[14]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[15]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[16]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[17]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[18]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[19]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[20]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]