September  2014, 19(7): 2353-2364. doi: 10.3934/dcdsb.2014.19.2353

Mathematical study of the small oscillations of a floating body in a bounded tank containing an incompressible viscous liquid

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria-Dipartimento di Scienze di Base e Applicate, per l'Ingegneria - Sezione Matematica, Sapienza Università di Roma, Rome, Italy

2. 

Professor Emeritus of Theoretical Mechanics, University of Franche-Compté, 2 B rue des Jardins, F - 25000 Besançon, France

Received  March 2013 Revised  August 2013 Published  August 2014

The authors study the small oscillations of a floating body in a bounded tank containing an incompressible viscous fluid.
    Using the variational formulation of the problem, they obtain an operator equation from which they can study the spectrum of the problem.
    The small motions are strongly and weakly damped aperiodic motions and, if the viscosity is sufficiently small, there is also at most finite number of damped oscillatory motions.
    The authors give also an existence and uniqueness theorem for the solution of the associated evolution problem.
Citation: Doretta Vivona, Pierre Capodanno. Mathematical study of the small oscillations of a floating body in a bounded tank containing an incompressible viscous liquid. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2353-2364. doi: 10.3934/dcdsb.2014.19.2353
References:
[1]

P. Appell, Traité de Mécanique Rationelle,, 3 (1952) Gauthier Villars -Paris., 3 (1952). Google Scholar

[2]

N. K. Askerov, S. G. Krein and G. I. Laptev, The problem on oscillations of a viscous fluid and related operator equations,, Functional Analysis and Its applications, 2 (1969), 21. Google Scholar

[3]

R. Dautray and J. L. Lion, Mathematical Analysis and Numerical Methods for Science and Technology,, 8, 8 (1988). doi: 10.1007/978-3-642-61566-5. Google Scholar

[4]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 128 Birkhäuser-Verlag, 128 (2001). doi: 10.1007/978-3-0348-8342-9. Google Scholar

[5]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 146 Birkhäuser-Verlag, 146 (2003). doi: 10.1007/978-3-0348-8063-3. Google Scholar

[6]

S. G. Krein, Oscillations of a viscous fluid in a container,, DAN SSR, 159 (1964), 262. Google Scholar

[7]

J. L. Lions, Equations Differentielle Opérationelles et Problémes Aux Limites,, Springer-Verlag, (1961). Google Scholar

[8]

N. N. Moiseyev, On the oscillations of a body floating in a bounded volume of fluid,, Moskov. Fiz Tekh. Inst. Issled. Mekh. Prikl. Mat., 1 (1958), 145. Google Scholar

[9]

N. N. Moiseyev and V. V. Rumiantsev, Dynamic Stability of Bodies Containing Fluid,, Springer-Verlag, (1968). Google Scholar

[10]

F. Riesz and B. Nagy, Leçons D'analyse Fonctionelle,, Gauthier Villars -Paris, (1968). Google Scholar

show all references

References:
[1]

P. Appell, Traité de Mécanique Rationelle,, 3 (1952) Gauthier Villars -Paris., 3 (1952). Google Scholar

[2]

N. K. Askerov, S. G. Krein and G. I. Laptev, The problem on oscillations of a viscous fluid and related operator equations,, Functional Analysis and Its applications, 2 (1969), 21. Google Scholar

[3]

R. Dautray and J. L. Lion, Mathematical Analysis and Numerical Methods for Science and Technology,, 8, 8 (1988). doi: 10.1007/978-3-642-61566-5. Google Scholar

[4]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 128 Birkhäuser-Verlag, 128 (2001). doi: 10.1007/978-3-0348-8342-9. Google Scholar

[5]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 146 Birkhäuser-Verlag, 146 (2003). doi: 10.1007/978-3-0348-8063-3. Google Scholar

[6]

S. G. Krein, Oscillations of a viscous fluid in a container,, DAN SSR, 159 (1964), 262. Google Scholar

[7]

J. L. Lions, Equations Differentielle Opérationelles et Problémes Aux Limites,, Springer-Verlag, (1961). Google Scholar

[8]

N. N. Moiseyev, On the oscillations of a body floating in a bounded volume of fluid,, Moskov. Fiz Tekh. Inst. Issled. Mekh. Prikl. Mat., 1 (1958), 145. Google Scholar

[9]

N. N. Moiseyev and V. V. Rumiantsev, Dynamic Stability of Bodies Containing Fluid,, Springer-Verlag, (1968). Google Scholar

[10]

F. Riesz and B. Nagy, Leçons D'analyse Fonctionelle,, Gauthier Villars -Paris, (1968). Google Scholar

[1]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[2]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[3]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[4]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[5]

Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255

[6]

Stanislaw Migórski, Anna Ochal. Navier-Stokes problems modeled by evolution hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 731-740. doi: 10.3934/proc.2007.2007.731

[7]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[8]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[11]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[12]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[13]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[14]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[15]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[16]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[17]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[18]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[19]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[20]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]