September  2014, 19(7): 2353-2364. doi: 10.3934/dcdsb.2014.19.2353

Mathematical study of the small oscillations of a floating body in a bounded tank containing an incompressible viscous liquid

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria-Dipartimento di Scienze di Base e Applicate, per l'Ingegneria - Sezione Matematica, Sapienza Università di Roma, Rome, Italy

2. 

Professor Emeritus of Theoretical Mechanics, University of Franche-Compté, 2 B rue des Jardins, F - 25000 Besançon, France

Received  March 2013 Revised  August 2013 Published  August 2014

The authors study the small oscillations of a floating body in a bounded tank containing an incompressible viscous fluid.
    Using the variational formulation of the problem, they obtain an operator equation from which they can study the spectrum of the problem.
    The small motions are strongly and weakly damped aperiodic motions and, if the viscosity is sufficiently small, there is also at most finite number of damped oscillatory motions.
    The authors give also an existence and uniqueness theorem for the solution of the associated evolution problem.
Citation: Doretta Vivona, Pierre Capodanno. Mathematical study of the small oscillations of a floating body in a bounded tank containing an incompressible viscous liquid. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2353-2364. doi: 10.3934/dcdsb.2014.19.2353
References:
[1]

P. Appell, Traité de Mécanique Rationelle,, 3 (1952) Gauthier Villars -Paris., 3 (1952).   Google Scholar

[2]

N. K. Askerov, S. G. Krein and G. I. Laptev, The problem on oscillations of a viscous fluid and related operator equations,, Functional Analysis and Its applications, 2 (1969), 21.   Google Scholar

[3]

R. Dautray and J. L. Lion, Mathematical Analysis and Numerical Methods for Science and Technology,, 8, 8 (1988).  doi: 10.1007/978-3-642-61566-5.  Google Scholar

[4]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 128 Birkhäuser-Verlag, 128 (2001).  doi: 10.1007/978-3-0348-8342-9.  Google Scholar

[5]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 146 Birkhäuser-Verlag, 146 (2003).  doi: 10.1007/978-3-0348-8063-3.  Google Scholar

[6]

S. G. Krein, Oscillations of a viscous fluid in a container,, DAN SSR, 159 (1964), 262.   Google Scholar

[7]

J. L. Lions, Equations Differentielle Opérationelles et Problémes Aux Limites,, Springer-Verlag, (1961).   Google Scholar

[8]

N. N. Moiseyev, On the oscillations of a body floating in a bounded volume of fluid,, Moskov. Fiz Tekh. Inst. Issled. Mekh. Prikl. Mat., 1 (1958), 145.   Google Scholar

[9]

N. N. Moiseyev and V. V. Rumiantsev, Dynamic Stability of Bodies Containing Fluid,, Springer-Verlag, (1968).   Google Scholar

[10]

F. Riesz and B. Nagy, Leçons D'analyse Fonctionelle,, Gauthier Villars -Paris, (1968).   Google Scholar

show all references

References:
[1]

P. Appell, Traité de Mécanique Rationelle,, 3 (1952) Gauthier Villars -Paris., 3 (1952).   Google Scholar

[2]

N. K. Askerov, S. G. Krein and G. I. Laptev, The problem on oscillations of a viscous fluid and related operator equations,, Functional Analysis and Its applications, 2 (1969), 21.   Google Scholar

[3]

R. Dautray and J. L. Lion, Mathematical Analysis and Numerical Methods for Science and Technology,, 8, 8 (1988).  doi: 10.1007/978-3-642-61566-5.  Google Scholar

[4]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 128 Birkhäuser-Verlag, 128 (2001).  doi: 10.1007/978-3-0348-8342-9.  Google Scholar

[5]

N. D. Kopachevskii and S. G. Krein, Operator Approach in Linear Problems of Hydrodynamics,, 146 Birkhäuser-Verlag, 146 (2003).  doi: 10.1007/978-3-0348-8063-3.  Google Scholar

[6]

S. G. Krein, Oscillations of a viscous fluid in a container,, DAN SSR, 159 (1964), 262.   Google Scholar

[7]

J. L. Lions, Equations Differentielle Opérationelles et Problémes Aux Limites,, Springer-Verlag, (1961).   Google Scholar

[8]

N. N. Moiseyev, On the oscillations of a body floating in a bounded volume of fluid,, Moskov. Fiz Tekh. Inst. Issled. Mekh. Prikl. Mat., 1 (1958), 145.   Google Scholar

[9]

N. N. Moiseyev and V. V. Rumiantsev, Dynamic Stability of Bodies Containing Fluid,, Springer-Verlag, (1968).   Google Scholar

[10]

F. Riesz and B. Nagy, Leçons D'analyse Fonctionelle,, Gauthier Villars -Paris, (1968).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[8]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[11]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[12]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[13]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]