October  2014, 19(8): 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

Fractional variational principle of Herglotz

1. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro

2. 

Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland

Received  April 2014 Revised  April 2014 Published  August 2014

The aim of this paper is to bring together two approaches to non-conservative systems -- the generalized variational principle of Herglotz and the fractional calculus of variations. Namely, we consider functionals whose extrema are sought, by differential equations that involve Caputo fractional derivatives. The Euler--Lagrange equations are obtained for the fractional variational problems of Herglotz-type and the transversality conditions are derived. The fractional Noether-type theorem for conservative and non-conservative physical systems is proved.
Citation: Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367
References:
[1]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines and Y. S. Ilyashenko, Ordinary Differential Equations and Smooth Dynamical Systems,, Encyclopaedia of Mathematical Sciences, (1988). Google Scholar

[2]

T. M. Atanacković, S. Konjik and S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/9/095201. Google Scholar

[3]

T. M. Atanacković and B. Stanković, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429. doi: 10.1016/j.mechrescom.2008.05.003. Google Scholar

[4]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noethers theorem for fractional problems of the calculus of variations,, J. Math. Anal. Appl., 334 (2007), 834. doi: 10.1016/j.jmaa.2007.01.013. Google Scholar

[5]

N. J. Ford and M. L. Morgado, Fractional boundary value problems: Analysis and numerical methods,, Fract. Calc. Appl. Anal., 14 (2011), 554. doi: 10.2478/s13540-011-0034-4. Google Scholar

[6]

N. J. Ford and M. L. Morgado, Distributed order equations as boundary value problems,, Comput. Math. Appl., 64 (2012), 2973. doi: 10.1016/j.camwa.2012.01.053. Google Scholar

[7]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz,, Topol. Methods Nonlinear Anal., 20 (2002), 261. Google Scholar

[8]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz,, Topol. Methods Nonlinear Anal., 26 (2005), 307. Google Scholar

[9]

B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem,, J. Math. Phys., 44 (2003), 3911. doi: 10.1063/1.1597419. Google Scholar

[10]

H. Goldstein, Classical Mechanics,, Addison-Wesley Press, (1951). Google Scholar

[11]

R. B. Guenther, C. M. Guenther and J. A. Gottsch, The Herglotz Lectures on Contact Trans- formations and Hamiltonian Systems,, Lecture Notes in Nonlinear Analysis, (1996). Google Scholar

[12]

G. Herglotz, Berührungstransformationen,, Lectures at the University of Göttingen, (1930). Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006). Google Scholar

[14]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type,, The Publishing Office of Czenstochowa University of Technology, (2009). Google Scholar

[15]

C. Lánczos, The Variational Principles of Mechanics,, Fourth edition, (1970). Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imp. Coll. Press, (2012). doi: 10.1142/p871. Google Scholar

[17]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians,, Appl. Math. Lett., 25 (2012), 1941. doi: 10.1016/j.aml.2012.03.006. Google Scholar

[18]

V. J. Menon, N. Chanana and Y. Singh, A fresh look at the BCK frictional lagrangian,, Prog. Theor. Phys., 98 (1997), 321. doi: 10.1143/PTP.98.321. Google Scholar

[19]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering,, Mathematics in Science and Engineering, (1999). Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090. doi: 10.1016/j.camwa.2012.01.068. Google Scholar

[21]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics,, Phys. Rev. E, 53 (1996), 1890. doi: 10.1103/PhysRevE.53.1890. Google Scholar

[22]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, translated from the 1987 Russian original, (1987). Google Scholar

[23]

S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type,, Vietnam Journal of Mathematics, (2013), 1. doi: 10.1007/s10013-013-0048-9. Google Scholar

show all references

References:
[1]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines and Y. S. Ilyashenko, Ordinary Differential Equations and Smooth Dynamical Systems,, Encyclopaedia of Mathematical Sciences, (1988). Google Scholar

[2]

T. M. Atanacković, S. Konjik and S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/9/095201. Google Scholar

[3]

T. M. Atanacković and B. Stanković, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429. doi: 10.1016/j.mechrescom.2008.05.003. Google Scholar

[4]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noethers theorem for fractional problems of the calculus of variations,, J. Math. Anal. Appl., 334 (2007), 834. doi: 10.1016/j.jmaa.2007.01.013. Google Scholar

[5]

N. J. Ford and M. L. Morgado, Fractional boundary value problems: Analysis and numerical methods,, Fract. Calc. Appl. Anal., 14 (2011), 554. doi: 10.2478/s13540-011-0034-4. Google Scholar

[6]

N. J. Ford and M. L. Morgado, Distributed order equations as boundary value problems,, Comput. Math. Appl., 64 (2012), 2973. doi: 10.1016/j.camwa.2012.01.053. Google Scholar

[7]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz,, Topol. Methods Nonlinear Anal., 20 (2002), 261. Google Scholar

[8]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz,, Topol. Methods Nonlinear Anal., 26 (2005), 307. Google Scholar

[9]

B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem,, J. Math. Phys., 44 (2003), 3911. doi: 10.1063/1.1597419. Google Scholar

[10]

H. Goldstein, Classical Mechanics,, Addison-Wesley Press, (1951). Google Scholar

[11]

R. B. Guenther, C. M. Guenther and J. A. Gottsch, The Herglotz Lectures on Contact Trans- formations and Hamiltonian Systems,, Lecture Notes in Nonlinear Analysis, (1996). Google Scholar

[12]

G. Herglotz, Berührungstransformationen,, Lectures at the University of Göttingen, (1930). Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006). Google Scholar

[14]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type,, The Publishing Office of Czenstochowa University of Technology, (2009). Google Scholar

[15]

C. Lánczos, The Variational Principles of Mechanics,, Fourth edition, (1970). Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imp. Coll. Press, (2012). doi: 10.1142/p871. Google Scholar

[17]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians,, Appl. Math. Lett., 25 (2012), 1941. doi: 10.1016/j.aml.2012.03.006. Google Scholar

[18]

V. J. Menon, N. Chanana and Y. Singh, A fresh look at the BCK frictional lagrangian,, Prog. Theor. Phys., 98 (1997), 321. doi: 10.1143/PTP.98.321. Google Scholar

[19]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering,, Mathematics in Science and Engineering, (1999). Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090. doi: 10.1016/j.camwa.2012.01.068. Google Scholar

[21]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics,, Phys. Rev. E, 53 (1996), 1890. doi: 10.1103/PhysRevE.53.1890. Google Scholar

[22]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, translated from the 1987 Russian original, (1987). Google Scholar

[23]

S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type,, Vietnam Journal of Mathematics, (2013), 1. doi: 10.1007/s10013-013-0048-9. Google Scholar

[1]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[2]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[3]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[4]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[5]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[6]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[7]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[8]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[9]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[10]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[11]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[12]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[13]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[14]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[15]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[16]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[17]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[18]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[19]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[20]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]