October  2014, 19(8): 2383-2399. doi: 10.3934/dcdsb.2014.19.2383

A singularly perturbed age structured SIRS model with fast recovery

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban

2. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

Received  November 2013 Revised  March 2014 Published  August 2014

Age structure of a population often plays a significant role in the spreading of a disease among its members. For instance, childhood diseases mostly affect the juvenile part of the population, while sexually transmitted diseases spread mostly among the adults. Thus, it is important to build epidemiological models which incorporate the demography of the affected populations. Doing this we must be careful as many diseases act on a time scale different from that of the vital processes. For many diseases, e.g. measles, influenza, the typical time unit is one day or one week, whereas the proper time unit for the vital processes is the average lifespan in the population; that is, 10-100 years. In such a case, the epidemiological model with vital dynamics becomes a multiple time scale model and thus it often can be significantly simplified by various asymptotic methods. The presented paper is concerned with an SIRS type disease spreading in a population with a continuous age structure modelled by the McKendrick-von Foerster equation. We consider a disease with a quick recovery rate in a large population. Though it is not too surprising that in such a model the introduced disease quickly vanishes, the result is mathematically interesting as the error estimates are uniform on the whole infinite time interval, in contrast to the typical results based on the Tikhonov theorem and classical asymptotic expansions.
Citation: Jacek Banasiak, Rodrigue Yves M'pika Massoukou. A singularly perturbed age structured SIRS model with fast recovery. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2383-2399. doi: 10.3934/dcdsb.2014.19.2383
References:
[1]

J. Banasiak, Mathematical Modelling in One Dimension,, Cambridge University Press, (2013).   Google Scholar

[2]

J. Banasiak, Introduction to Mathematical Methods in Population Dynamics,, in preparation., ().   Google Scholar

[3]

J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment,, Math. Models Methods Appl. Sci., 23 (2013), 2647.  doi: 10.1142/S0218202513500425.  Google Scholar

[4]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology,, Birkhäuser/Springer Cham, (2014).  doi: 10.1007/978-3-319-05140-6.  Google Scholar

[5]

J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population,, Discrete Contin. Dyn. Syst., 17 (2012), 445.  doi: 10.3934/dcdsb.2012.17.445.  Google Scholar

[6]

J. Banasiak, A. Goswami and S. Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach,, J. Evol. Equ., 11 (2011), 121.  doi: 10.1007/s00028-010-0086-7.  Google Scholar

[7]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behaviour of an age-structured epidemic model,, SIAM J. Math. Anal., 22 (1991), 1065.  doi: 10.1137/0522069.  Google Scholar

[8]

D. J. D. Earn, A Light Introduction to Modelling Recurrent Epidemics,, in Mathematical Epidemiology (eds. F. Brauer, (1945), 3.  doi: 10.1007/978-3-540-78911-6_1.  Google Scholar

[9]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics,, Applied Mathematics Monographs, (1995).   Google Scholar

[10]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multi state stable population process,, Mathematical Population Studies, 1 (1988), 49.  doi: 10.1080/08898488809525260.  Google Scholar

[11]

R. M'pika Massoukou, Age Structured Models of Mathematical Epidemiology,, Ph.D thesis, (2013).   Google Scholar

[12]

J. Prüss, Equilibrium Solutions of Age-Specific Population Dynamics of Several Species,, J. Math. Biol., 11 (1981), 65.  doi: 10.1007/BF00275825.  Google Scholar

[13]

J. Prüss, Stability analysis for equilibria in age-specific population dynamics,, Nonlinear Anal., 7 (1983), 1291.  doi: 10.1016/0362-546X(83)90002-0.  Google Scholar

[14]

H. R. Thieme, Mathematics in Population Biology,, Princeton University Press, (2003).   Google Scholar

[15]

G. F. Webb, Theory of Non-linear Age Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

show all references

References:
[1]

J. Banasiak, Mathematical Modelling in One Dimension,, Cambridge University Press, (2013).   Google Scholar

[2]

J. Banasiak, Introduction to Mathematical Methods in Population Dynamics,, in preparation., ().   Google Scholar

[3]

J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment,, Math. Models Methods Appl. Sci., 23 (2013), 2647.  doi: 10.1142/S0218202513500425.  Google Scholar

[4]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology,, Birkhäuser/Springer Cham, (2014).  doi: 10.1007/978-3-319-05140-6.  Google Scholar

[5]

J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population,, Discrete Contin. Dyn. Syst., 17 (2012), 445.  doi: 10.3934/dcdsb.2012.17.445.  Google Scholar

[6]

J. Banasiak, A. Goswami and S. Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach,, J. Evol. Equ., 11 (2011), 121.  doi: 10.1007/s00028-010-0086-7.  Google Scholar

[7]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behaviour of an age-structured epidemic model,, SIAM J. Math. Anal., 22 (1991), 1065.  doi: 10.1137/0522069.  Google Scholar

[8]

D. J. D. Earn, A Light Introduction to Modelling Recurrent Epidemics,, in Mathematical Epidemiology (eds. F. Brauer, (1945), 3.  doi: 10.1007/978-3-540-78911-6_1.  Google Scholar

[9]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics,, Applied Mathematics Monographs, (1995).   Google Scholar

[10]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multi state stable population process,, Mathematical Population Studies, 1 (1988), 49.  doi: 10.1080/08898488809525260.  Google Scholar

[11]

R. M'pika Massoukou, Age Structured Models of Mathematical Epidemiology,, Ph.D thesis, (2013).   Google Scholar

[12]

J. Prüss, Equilibrium Solutions of Age-Specific Population Dynamics of Several Species,, J. Math. Biol., 11 (1981), 65.  doi: 10.1007/BF00275825.  Google Scholar

[13]

J. Prüss, Stability analysis for equilibria in age-specific population dynamics,, Nonlinear Anal., 7 (1983), 1291.  doi: 10.1016/0362-546X(83)90002-0.  Google Scholar

[14]

H. R. Thieme, Mathematics in Population Biology,, Princeton University Press, (2003).   Google Scholar

[15]

G. F. Webb, Theory of Non-linear Age Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[5]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[17]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[18]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[19]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (3)

[Back to Top]