October  2014, 19(8): 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

Systems described by Volterra type integral operators

1. 

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland, Poland, Poland

Received  October 2013 Revised  March 2014 Published  August 2014

In the paper we consider a nonlinear Volterra integral operator defined on some subspace of absolutely continuous function. Some sufficient conditions for the operator considered to be a diffeomorphism are formulated. The proof of main result relies in essential way on variational method. Applications of results to control systems with feedback and a specific nonlinear Volterra equation are presented.
Citation: Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401
References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations,, SIAM J. Math. Anal., 6 (1975), 446.  doi: 10.1137/0506039.  Google Scholar

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory,, ZAMM Z. Angew. Math. Mech., 85 (2005), 748.  doi: 10.1002/zamm.200310209.  Google Scholar

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian,, Abstr. Appl. Anal., 2013 (2408).  doi: 10.1155/2013/240863.  Google Scholar

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004).  doi: 10.1017/CBO9780511543234.  Google Scholar

[5]

R. M. Christensen, Theory of Viscoelasticity,, Academic Press, (1982).  doi: 10.1115/1.3408900.  Google Scholar

[6]

C. Corduneanu, Integral Equations and Applications,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569395.  Google Scholar

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation,, Appl. Math. Comput., 145 (2003), 487.  doi: 10.1016/S0096-3003(02)00504-0.  Google Scholar

[8]

A. Friedman, On integral equations of Volterra type,, J. Analyse Math., 11 (1963), 381.  doi: 10.1007/BF02789991.  Google Scholar

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space,, Trans. Amer. Math. Soc., 126 (1967), 131.  doi: 10.1090/S0002-9947-1967-0206754-7.  Google Scholar

[10]

G. Gripenberg, An abstract nonlinear Volterra equation,, Israel J. Math., 34 (1979), 198.  doi: 10.1007/BF02760883.  Google Scholar

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Cambridge University Press, (1990).  doi: 10.1017/CBO9780511662805.  Google Scholar

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Adv. Nonlinear Stud., 12 (2012), 89.   Google Scholar

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, Studies in Mathematics and its Applications, (1979).   Google Scholar

[14]

M. Joshi, Existence theorems for Urysohn's integral equation,, Proc. Amer. Math. Soc., 49 (1975), 387.   Google Scholar

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations,, SIAM J. Math. Anal., 10 (1979), 274.  doi: 10.1137/0510026.  Google Scholar

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I,, Academic Press, (1969).   Google Scholar

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics,, Adv. Sci. Tech., 6 (1972), 45.   Google Scholar

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems,, Selected Reprint Series, (1979).   Google Scholar

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[20]

R. K. Miller, Nonlinear Volterra Integral Equations,, Mathematics Lecture Note Series, (1971).   Google Scholar

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations,, IEEE Trans. Automat. Control, 31 (1986), 216.  doi: 10.1109/TAC.1986.1104251.  Google Scholar

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces,, J. Appl. Math. Stochastic Anal., 11 (1998), 449.  doi: 10.1155/S1048953398000379.  Google Scholar

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation,, IEEE Trans. Automat. Control, 31 (1986), 108.  doi: 10.1109/TAC.1986.1104204.  Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications,, Modern Birkhäuser Classics, (2012).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., (1987).   Google Scholar

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications,, Wiley-Interscience, (1998).   Google Scholar

show all references

References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations,, SIAM J. Math. Anal., 6 (1975), 446.  doi: 10.1137/0506039.  Google Scholar

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory,, ZAMM Z. Angew. Math. Mech., 85 (2005), 748.  doi: 10.1002/zamm.200310209.  Google Scholar

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian,, Abstr. Appl. Anal., 2013 (2408).  doi: 10.1155/2013/240863.  Google Scholar

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004).  doi: 10.1017/CBO9780511543234.  Google Scholar

[5]

R. M. Christensen, Theory of Viscoelasticity,, Academic Press, (1982).  doi: 10.1115/1.3408900.  Google Scholar

[6]

C. Corduneanu, Integral Equations and Applications,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569395.  Google Scholar

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation,, Appl. Math. Comput., 145 (2003), 487.  doi: 10.1016/S0096-3003(02)00504-0.  Google Scholar

[8]

A. Friedman, On integral equations of Volterra type,, J. Analyse Math., 11 (1963), 381.  doi: 10.1007/BF02789991.  Google Scholar

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space,, Trans. Amer. Math. Soc., 126 (1967), 131.  doi: 10.1090/S0002-9947-1967-0206754-7.  Google Scholar

[10]

G. Gripenberg, An abstract nonlinear Volterra equation,, Israel J. Math., 34 (1979), 198.  doi: 10.1007/BF02760883.  Google Scholar

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,, Cambridge University Press, (1990).  doi: 10.1017/CBO9780511662805.  Google Scholar

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Adv. Nonlinear Stud., 12 (2012), 89.   Google Scholar

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, Studies in Mathematics and its Applications, (1979).   Google Scholar

[14]

M. Joshi, Existence theorems for Urysohn's integral equation,, Proc. Amer. Math. Soc., 49 (1975), 387.   Google Scholar

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations,, SIAM J. Math. Anal., 10 (1979), 274.  doi: 10.1137/0510026.  Google Scholar

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I,, Academic Press, (1969).   Google Scholar

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics,, Adv. Sci. Tech., 6 (1972), 45.   Google Scholar

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems,, Selected Reprint Series, (1979).   Google Scholar

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[20]

R. K. Miller, Nonlinear Volterra Integral Equations,, Mathematics Lecture Note Series, (1971).   Google Scholar

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations,, IEEE Trans. Automat. Control, 31 (1986), 216.  doi: 10.1109/TAC.1986.1104251.  Google Scholar

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces,, J. Appl. Math. Stochastic Anal., 11 (1998), 449.  doi: 10.1155/S1048953398000379.  Google Scholar

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation,, IEEE Trans. Automat. Control, 31 (1986), 108.  doi: 10.1109/TAC.1986.1104204.  Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications,, Modern Birkhäuser Classics, (2012).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., (1987).   Google Scholar

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications,, Wiley-Interscience, (1998).   Google Scholar

[1]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[5]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[6]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[11]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[12]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[15]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[16]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

[Back to Top]