October  2014, 19(8): 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

Systems described by Volterra type integral operators

1. 

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland, Poland, Poland

Received  October 2013 Revised  March 2014 Published  August 2014

In the paper we consider a nonlinear Volterra integral operator defined on some subspace of absolutely continuous function. Some sufficient conditions for the operator considered to be a diffeomorphism are formulated. The proof of main result relies in essential way on variational method. Applications of results to control systems with feedback and a specific nonlinear Volterra equation are presented.
Citation: Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401
References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations, SIAM J. Math. Anal., 6 (1975), 446-456. doi: 10.1137/0506039.

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory, ZAMM Z. Angew. Math. Mech., 85 (2005), 748-754. doi: 10.1002/zamm.200310209.

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian, Abstr. Appl. Anal., 2013, Art. ID 240863, 10 pp. doi: 10.1155/2013/240863.

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[5]

R. M. Christensen, Theory of Viscoelasticity, Academic Press, New York, 1982. doi: 10.1115/1.3408900.

[6]

C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569395.

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation, Appl. Math. Comput., 145 (2003), 487-493. doi: 10.1016/S0096-3003(02)00504-0.

[8]

A. Friedman, On integral equations of Volterra type, J. Analyse Math., 11 (1963), 381-413. doi: 10.1007/BF02789991.

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc., 126 (1967), 131-179. doi: 10.1090/S0002-9947-1967-0206754-7.

[10]

G. Gripenberg, An abstract nonlinear Volterra equation, Israel J. Math., 34 (1979), 198-212. doi: 10.1007/BF02760883.

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud., 12 (2012), 89-100.

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1979.

[14]

M. Joshi, Existence theorems for Urysohn's integral equation, Proc. Amer. Math. Soc., 49 (1975), 387-392.

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations, SIAM J. Math. Anal., 10 (1979), 274-280. doi: 10.1137/0510026.

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I, Academic Press, New York, 1969.

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics, Adv. Sci. Tech., 6 (1972), 45-63.

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems, Selected Reprint Series, IEEE Press, New York, 1979.

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[20]

R. K. Miller, Nonlinear Volterra Integral Equations, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, Calif., 1971.

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations, IEEE Trans. Automat. Control, 31 (1986), 216-226. doi: 10.1109/TAC.1986.1104251.

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces, J. Appl. Math. Stochastic Anal., 11 (1998), 449-464. doi: 10.1155/S1048953398000379.

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation, IEEE Trans. Automat. Control, 31 (1986), 108-115. doi: 10.1109/TAC.1986.1104204.

[24]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Springer, New York, 2012. doi: 10.1007/978-3-0348-8570-6.

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., Harlow, Essex, 1987.

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications, Wiley-Interscience, New Jersey, 1998.

show all references

References:
[1]

Z. Artstein, Continuous dependence of solutions of Volterra integral equations, SIAM J. Math. Anal., 6 (1975), 446-456. doi: 10.1137/0506039.

[2]

T. M. Atanackovic and S. Pilipovic, On a class of equations arising in linear viscoelastic theory, ZAMM Z. Angew. Math. Mech., 85 (2005), 748-754. doi: 10.1002/zamm.200310209.

[3]

D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian, Abstr. Appl. Anal., 2013, Art. ID 240863, 10 pp. doi: 10.1155/2013/240863.

[4]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[5]

R. M. Christensen, Theory of Viscoelasticity, Academic Press, New York, 1982. doi: 10.1115/1.3408900.

[6]

C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569395.

[7]

M. A. Darwish, A. A. El-Bary and W. G. El-Sayed, Solvability of Urysohn integral equation, Appl. Math. Comput., 145 (2003), 487-493. doi: 10.1016/S0096-3003(02)00504-0.

[8]

A. Friedman, On integral equations of Volterra type, J. Analyse Math., 11 (1963), 381-413. doi: 10.1007/BF02789991.

[9]

A. Friedman and M. Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc., 126 (1967), 131-179. doi: 10.1090/S0002-9947-1967-0206754-7.

[10]

G. Gripenberg, An abstract nonlinear Volterra equation, Israel J. Math., 34 (1979), 198-212. doi: 10.1007/BF02760883.

[11]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.

[12]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud., 12 (2012), 89-100.

[13]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1979.

[14]

M. Joshi, Existence theorems for Urysohn's integral equation, Proc. Amer. Math. Soc., 49 (1975), 387-392.

[15]

T. Kiffe and M. Stecher, $L^{2}$ solutions of Volterra integral equations, SIAM J. Math. Anal., 10 (1979), 274-280. doi: 10.1137/0510026.

[16]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, I, Academic Press, New York, 1969.

[17]

S. -O. Londen, Stability analysis on nonlinear point reactor kinetics, Adv. Sci. Tech., 6 (1972), 45-63.

[18]

A. G. J. MacFarlane, ed., Frequency-Response Methods in Control Systems, Selected Reprint Series, IEEE Press, New York, 1979.

[19]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[20]

R. K. Miller, Nonlinear Volterra Integral Equations, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, Calif., 1971.

[21]

M. S. Mousa, R. K. Miller and A. N. Michel, Stability analysis of hybrid composite dynamical systems: descriptions involving operators and differential equations, IEEE Trans. Automat. Control, 31 (1986), 216-226. doi: 10.1109/TAC.1986.1104251.

[22]

D. O'Regan, Volterra and Urysohn integral equations in Banach Spaces, J. Appl. Math. Stochastic Anal., 11 (1998), 449-464. doi: 10.1155/S1048953398000379.

[23]

M. Z. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshot evaluation, IEEE Trans. Automat. Control, 31 (1986), 108-115. doi: 10.1109/TAC.1986.1104204.

[24]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Springer, New York, 2012. doi: 10.1007/978-3-0348-8570-6.

[25]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs Pure Appl. Math.Longman Sci. Tech., Harlow, Essex, 1987.

[26]

R. S. Sánchez-Peńa and M. Sznaier, Robust Systems Theory and Applications, Wiley-Interscience, New Jersey, 1998.

[1]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[2]

István Győri, László Horváth. On the fundamental solution and its application in a large class of differential systems determined by Volterra type operators with delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1665-1702. doi: 10.3934/dcds.2020089

[3]

Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141

[4]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[5]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[6]

Patricio Felmer, Alexander Quaas. Fundamental solutions for a class of Isaacs integral operators. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 493-508. doi: 10.3934/dcds.2011.30.493

[7]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[8]

Ahmad Al-Salman. Marcinkiewicz integral operators along twisted surfaces. Communications on Pure and Applied Analysis, 2022, 21 (1) : 159-181. doi: 10.3934/cpaa.2021173

[9]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[10]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[11]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[12]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[13]

Gümrah Uysal. On a special class of modified integral operators preserving some exponential functions. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2021044

[14]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[15]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[16]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[17]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[18]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[19]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[20]

Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (140)
  • HTML views (0)
  • Cited by (2)

[Back to Top]