October  2014, 19(8): 2417-2423. doi: 10.3934/dcdsb.2014.19.2417

A nonlocal problem describing spherical system of stars

1. 

Institute of Mathematics and Computer Science, Opole University, ul. Oleska 48, 45-052 Opole, Poland, Poland

Received  March 2014 Revised  April 2014 Published  August 2014

We prove in this note the existence and uniqueness of solutions of a nonlocal problem appearing as a model of galaxy in early stage of evolution. Some properties of solutions are also given.
Citation: Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2417-2423. doi: 10.3934/dcdsb.2014.19.2417
References:
[1]

T. A. Agekyan, Spherical systems of stars and galaxies in early stage of evolution,, (Russian) Vestnik Leningrad Univ., I (1962), 153. Google Scholar

[2]

P. Biler and T. Nadzieja, Structure of steady states for Streater's energy-transport models of gravitating particles,, Topological Methods in Nonlinear Analysis, 19 (2002), 283. Google Scholar

[3]

P. Biler, T. Nadzieja and R. Stańczy, Nonisothermal systems of self-attracting Fermi-Dirac particles,, Banach Center Publ., 66 (2004), 61. doi: 10.4064/bc66-0-5. Google Scholar

[4]

P. Biler, Ph. Laurençot and T. Nadzieja, On an evolution system describing self-gravitating Fermi-Dirac particles,, Adv. Diff.Eq., 9 (2004), 563. Google Scholar

[5]

P. Biler and R. Stańczy, Nonlinear diffusion models for self-gravitating particles,, Intern. Ser. Numer. Math, 154 (2007), 107. doi: 10.1007/978-3-7643-7719-9_11. Google Scholar

[6]

J. Binney, S. Tremaine, Galactic Dynamics,, Princeton Univ. Press, (1987). doi: 10.1063/1.2811635. Google Scholar

[7]

A. M. Friedman and V. L. Polyachenko, Physics of Gravitating Systems I: Equilibrium and Stability,, Springer, (1984). doi: 10.1007/978-3-642-87833-6. Google Scholar

[8]

A. Krzywicki and T. Nadzieja, Nonlocal elliptic problems,, Banach Center Publ., 52 (2000), 147. Google Scholar

show all references

References:
[1]

T. A. Agekyan, Spherical systems of stars and galaxies in early stage of evolution,, (Russian) Vestnik Leningrad Univ., I (1962), 153. Google Scholar

[2]

P. Biler and T. Nadzieja, Structure of steady states for Streater's energy-transport models of gravitating particles,, Topological Methods in Nonlinear Analysis, 19 (2002), 283. Google Scholar

[3]

P. Biler, T. Nadzieja and R. Stańczy, Nonisothermal systems of self-attracting Fermi-Dirac particles,, Banach Center Publ., 66 (2004), 61. doi: 10.4064/bc66-0-5. Google Scholar

[4]

P. Biler, Ph. Laurençot and T. Nadzieja, On an evolution system describing self-gravitating Fermi-Dirac particles,, Adv. Diff.Eq., 9 (2004), 563. Google Scholar

[5]

P. Biler and R. Stańczy, Nonlinear diffusion models for self-gravitating particles,, Intern. Ser. Numer. Math, 154 (2007), 107. doi: 10.1007/978-3-7643-7719-9_11. Google Scholar

[6]

J. Binney, S. Tremaine, Galactic Dynamics,, Princeton Univ. Press, (1987). doi: 10.1063/1.2811635. Google Scholar

[7]

A. M. Friedman and V. L. Polyachenko, Physics of Gravitating Systems I: Equilibrium and Stability,, Springer, (1984). doi: 10.1007/978-3-642-87833-6. Google Scholar

[8]

A. Krzywicki and T. Nadzieja, Nonlocal elliptic problems,, Banach Center Publ., 52 (2000), 147. Google Scholar

[1]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[2]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[3]

Pablo Cincotta, Claudia Giordano, Juan C. Muzzio. Global dynamics in a self--consistent model of elliptical galaxy. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 439-454. doi: 10.3934/dcdsb.2008.10.439

[4]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[5]

Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure & Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771

[6]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[7]

Jun Wang, Qiuping Geng, Maochun Zhu. Existence of the normalized solutions to the nonlocal elliptic system with partial confinement. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2187-2201. doi: 10.3934/dcds.2019092

[8]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[9]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[10]

Pierluigi Colli, Luca Scarpa. Existence of solutions for a model of microwave heating. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3011-3034. doi: 10.3934/dcds.2016.36.3011

[11]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[12]

John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89

[13]

Dong Li, Xiaoyi Zhang. Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1591-1606. doi: 10.3934/cpaa.2010.9.1591

[14]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[15]

Zhiyu Wang, Yan Guo, Zhiwu Lin, Pingwen Zhang. Unstable galaxy models. Kinetic & Related Models, 2013, 6 (4) : 701-714. doi: 10.3934/krm.2013.6.701

[16]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[17]

Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473

[18]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[19]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[20]

Joost Hulshof, Robert Nolet, Georg Prokert. Existence and linear stability of solutions of the ballistic VSC model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 35-51. doi: 10.3934/dcdss.2014.7.35

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]