October  2014, 19(8): 2425-2445. doi: 10.3934/dcdsb.2014.19.2425

Analysis of two quasistatic history-dependent contact models

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

2. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Łojasiewicza 6, 30348 Krakow

3. 

Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  October 2013 Revised  January 2014 Published  August 2014

We consider two mathematical models which describe the evolution of a viscoelastic and viscoplastic body, respectively, in contact with a piston or a device, the so-called obstacle or foundation. In both models the contact process is assumed to be quasistatic and the friction is described with a Clarke subdifferential boundary condition. The novelty of the models consists in the constitutive laws as well as in the contact conditions we use, which involve a memory term. We derive a variational formulation of the problems which is in the form of a system coupling a nonlinear integral equation with a history--dependent hemivariational inequality. Then, we prove the existence of a weak solution and, under additional assumptions, its uniqueness. The proof is based on a result on history--dependent hemivariational inequalities obtained in [18].
Citation: Xiaoliang Cheng, Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of two quasistatic history-dependent contact models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2425-2445. doi: 10.3934/dcdsb.2014.19.2425
References:
[1]

H. T. Banks, S. Hu and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids,, Adv. Appl. Math. Mech., 3 (2011), 1.   Google Scholar

[2]

H. T. Banks, G. A. Pinter, L. K. Potter, J. M. Gaitens and L. C. Yanyo, Modeling of quasistatic and dynamic load responses of filled viesoelastic materials,, Chapter 11 in Mathematical Modeling: Case Studies from Industry (eds. E. Cumberbatch and A. Fitt), (2011), 229.   Google Scholar

[3]

H. T. Banks, G. A. Pinter, L. K. Potter, B. C. Munoz and L. C. Yanyo, Estimation and control related issues in smart material structure and fluids,, Optimization Techniques and Applications, (1998), 19.   Google Scholar

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983).   Google Scholar

[5]

N. Cristescu and I. Suliciu, Viscoplasticity,, Martinus Nijhoff Publishers, (1982).   Google Scholar

[6]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory,, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[7]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications,, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[8]

A. D. Drozdov, Finite Elasticity and Viscoelasticity-A Course in the Nonlinear Mechanics of Solids,, World Scientific, (1996).  doi: 10.1142/2905.  Google Scholar

[9]

C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems,, Pure and Applied Mathematics, (2005).  doi: 10.1201/9781420027365.  Google Scholar

[10]

A. Farcaş, F. Pătrulescu and M. Sofonea, A history-dependent contact problem with unilateral constraint,, Mathematics and its Applications, 2 (2012), 105.   Google Scholar

[11]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,, Studies in Advanced Mathematics, (2002).   Google Scholar

[12]

I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity,, Oxford University Press, (1993).   Google Scholar

[13]

A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance,, Int. J. Engng. Sci., 26 (1988), 811.  doi: 10.1016/0020-7225(88)90032-8.  Google Scholar

[14]

A. Kulig and S. Migórski, Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator,, Nonlinear Analysis, 75 (2012), 4729.  doi: 10.1016/j.na.2012.03.023.  Google Scholar

[15]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlinear Analysis TMA, 11 (1987), 407.  doi: 10.1016/0362-546X(87)90055-1.  Google Scholar

[16]

S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction,, Applicable Analysis, 84 (2005), 669.  doi: 10.1080/00036810500048129.  Google Scholar

[17]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity,, Journal of Elasticity, 83 (2006), 247.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[18]

S. Migórski, A. Ochal and M. Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics,, Nonlinear Anal. Real World Appl., 12 (2011), 3384.  doi: 10.1016/j.nonrwa.2011.06.002.  Google Scholar

[19]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems,, Advances in Mechanics and Mathematics, (2013).  doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[20]

J. T. Oden and J. A. C. Martins, Models and computational methods for dynamic friction phenomena,, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527.  doi: 10.1016/0045-7825(85)90009-X.  Google Scholar

[21]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications,, Birkhäuser, (1985).  doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[22]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-51677-1.  Google Scholar

[23]

J. Piotrowski, Smoothing dry friction damping by dither generated in rolling contact of wheel and rail and its influence on ride dynamics of freight wagons,, Vehicle System Dynamics, 48 (2010), 675.  doi: 10.1080/00423110903126478.  Google Scholar

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact,, Springer, (2004).  doi: 10.1007/b99799.  Google Scholar

[25]

M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics,, London Mathematical Society Lecture Note Series, (2012).  doi: 10.1017/CBO9781139104166.  Google Scholar

[26]

M. Sofonea and F. Pätrulescu, Analysis of a history-dependent frictionless contact problem,, Mathematics and Mechanics of Solids, 18 (2013), 409.  doi: 10.1177/1081286512440004.  Google Scholar

[27]

M. Sofonea and M. Shillor, A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient,, Communications in Pure and Appled Analysis, 13 (2014), 371.  doi: 10.3934/cpaa.2014.13.371.  Google Scholar

show all references

References:
[1]

H. T. Banks, S. Hu and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids,, Adv. Appl. Math. Mech., 3 (2011), 1.   Google Scholar

[2]

H. T. Banks, G. A. Pinter, L. K. Potter, J. M. Gaitens and L. C. Yanyo, Modeling of quasistatic and dynamic load responses of filled viesoelastic materials,, Chapter 11 in Mathematical Modeling: Case Studies from Industry (eds. E. Cumberbatch and A. Fitt), (2011), 229.   Google Scholar

[3]

H. T. Banks, G. A. Pinter, L. K. Potter, B. C. Munoz and L. C. Yanyo, Estimation and control related issues in smart material structure and fluids,, Optimization Techniques and Applications, (1998), 19.   Google Scholar

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983).   Google Scholar

[5]

N. Cristescu and I. Suliciu, Viscoplasticity,, Martinus Nijhoff Publishers, (1982).   Google Scholar

[6]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory,, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[7]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications,, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[8]

A. D. Drozdov, Finite Elasticity and Viscoelasticity-A Course in the Nonlinear Mechanics of Solids,, World Scientific, (1996).  doi: 10.1142/2905.  Google Scholar

[9]

C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems,, Pure and Applied Mathematics, (2005).  doi: 10.1201/9781420027365.  Google Scholar

[10]

A. Farcaş, F. Pătrulescu and M. Sofonea, A history-dependent contact problem with unilateral constraint,, Mathematics and its Applications, 2 (2012), 105.   Google Scholar

[11]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,, Studies in Advanced Mathematics, (2002).   Google Scholar

[12]

I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity,, Oxford University Press, (1993).   Google Scholar

[13]

A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance,, Int. J. Engng. Sci., 26 (1988), 811.  doi: 10.1016/0020-7225(88)90032-8.  Google Scholar

[14]

A. Kulig and S. Migórski, Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator,, Nonlinear Analysis, 75 (2012), 4729.  doi: 10.1016/j.na.2012.03.023.  Google Scholar

[15]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlinear Analysis TMA, 11 (1987), 407.  doi: 10.1016/0362-546X(87)90055-1.  Google Scholar

[16]

S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction,, Applicable Analysis, 84 (2005), 669.  doi: 10.1080/00036810500048129.  Google Scholar

[17]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity,, Journal of Elasticity, 83 (2006), 247.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[18]

S. Migórski, A. Ochal and M. Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics,, Nonlinear Anal. Real World Appl., 12 (2011), 3384.  doi: 10.1016/j.nonrwa.2011.06.002.  Google Scholar

[19]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems,, Advances in Mechanics and Mathematics, (2013).  doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[20]

J. T. Oden and J. A. C. Martins, Models and computational methods for dynamic friction phenomena,, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527.  doi: 10.1016/0045-7825(85)90009-X.  Google Scholar

[21]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications,, Birkhäuser, (1985).  doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[22]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-51677-1.  Google Scholar

[23]

J. Piotrowski, Smoothing dry friction damping by dither generated in rolling contact of wheel and rail and its influence on ride dynamics of freight wagons,, Vehicle System Dynamics, 48 (2010), 675.  doi: 10.1080/00423110903126478.  Google Scholar

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact,, Springer, (2004).  doi: 10.1007/b99799.  Google Scholar

[25]

M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics,, London Mathematical Society Lecture Note Series, (2012).  doi: 10.1017/CBO9781139104166.  Google Scholar

[26]

M. Sofonea and F. Pätrulescu, Analysis of a history-dependent frictionless contact problem,, Mathematics and Mechanics of Solids, 18 (2013), 409.  doi: 10.1177/1081286512440004.  Google Scholar

[27]

M. Sofonea and M. Shillor, A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient,, Communications in Pure and Appled Analysis, 13 (2014), 371.  doi: 10.3934/cpaa.2014.13.371.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[2]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[3]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[8]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[9]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[10]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[13]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[14]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[15]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[16]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[17]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[20]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

[Back to Top]