October  2014, 19(8): 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

Existence of unbounded solutions of a linear homogenous system of differential equations with two delays

1. 

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering and Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic

2. 

Department of Mathematics, University of Žilina, Žilina, Slovak Republic, Slovak Republic

Received  October 2013 Revised  May 2014 Published  August 2014

Behavior of solutions of a linear homogeneous system of differential equations with deviating arguments in the form \begin{equation*} \dot y(t)=\beta(t)\left[y(t-\delta)-y(t-\tau)\right] \end{equation*} is discussed for $t\to\infty$. It is assumed that $y$ is an $n$-dimensional column vector, $n\geq 1$ is an integer, $\delta,\tau\in{\mathbb{R}}$, $\tau>\delta>0$, and $\beta(t)$ is an $n\times n$ matrix defined for $t\geq t_{0}$, $t_{0}\in\mathbb{R}$, and such that its elements are nonnegative, continuous functions and in every row of this matrix at least one element is nonzero. The existence of solutions in an exponential form under certain assumptions is proved. Sufficient conditions for the existence of unbounded solutions and the estimations for a solution are derived. A comparison with the known results and an illustrative example are given.
Citation: Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447
References:
[1]

O. Arino and M. Pituk, More on linear differential systems with small delays,, J. Diff. Equat., 170 (2001), 381.  doi: 10.1006/jdeq.2000.3824.  Google Scholar

[2]

F. V. Atkinson and J. R. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations,, J. Math. Anal. Appl., 91 (1983), 410.  doi: 10.1016/0022-247X(83)90161-0.  Google Scholar

[3]

H. Bereketoǧlu and A. Huseynov, Convergence of solutions of nonhomogeneous linear difference systems with delays,, Acta Appl. Math., 110 (2010), 259.  doi: 10.1007/s10440-008-9404-2.  Google Scholar

[4]

H. Bereketoǧlu and F. Karakoç, Asymptotic constancy for impulsive delay differential equations,, Dynam. Systems Appl., 17 (2008), 71.   Google Scholar

[5]

H. Bereketoglu and M. Pituk, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays,, Discrete Contin. Dyn. Syst., (2003), 100.   Google Scholar

[6]

J. Diblík, Asymptotic convergence criteria of solutions of delayed functional differential equations,, J. Math. Anal. Appl., 274 (2002), 349.  doi: 10.1016/S0022-247X(02)00311-6.  Google Scholar

[7]

J. Diblík, Asymptotic representation of solutions of equation $\dot y(t)=\beta (t)[y(t)-y(t-\tau(t))]$,, J. Math. Anal. Appl., 217 (1998), 200.  doi: 10.1006/jmaa.1997.5709.  Google Scholar

[8]

J. Diblík, R. Chupáč and M. Růžičková, Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^n\beta_i(t)[y(t-\delta_i)-y(t-\tau_i)]$,, Appl. Math. Comput., 221 (2013), 610.  doi: 10.1016/j.amc.2013.07.001.  Google Scholar

[9]

J. Diblík and M. Růžičková, Convergence of the solutions of the equation $\dot y(t)=\beta (t)[y(t-\delta)-y(t-\tau)]$ in the critical case,, J. Math. Anal. Appl., 331 (2007), 1361.  doi: 10.1016/j.jmaa.2006.10.001.  Google Scholar

[10]

J. Diblík and M. Růžičková, Exponential solutions of equation $\dot y(t)=\beta (t)[y(t-\delta)-y(t-\tau)]$,, J. Math. Anal. Appl., 294 (2004), 273.  doi: 10.1016/j.jmaa.2004.02.036.  Google Scholar

[11]

J. Diblík, M. Růžičková and Z. Šutá, Asymptotic convergence of the solutions of a discrete system with delays,, Appl. Math. Comput., 219 (2012), 4036.  doi: 10.1016/j.amc.2012.10.040.  Google Scholar

[12]

I. Györi and L. Horváth, Asymptotic constancy in linear difference equations: Limit formulae and sharp conditions,, Adv. Difference Equ., 2010 (7893).   Google Scholar

[13]

I. Györi, F. Karakoç and H. Bereketoǧlu, Convergence of solutions of a linear impulsive differential equations system with many delays,, Dyn. Contin. Discrete Impuls. Syst., 18 (2011), 191.   Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

show all references

References:
[1]

O. Arino and M. Pituk, More on linear differential systems with small delays,, J. Diff. Equat., 170 (2001), 381.  doi: 10.1006/jdeq.2000.3824.  Google Scholar

[2]

F. V. Atkinson and J. R. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations,, J. Math. Anal. Appl., 91 (1983), 410.  doi: 10.1016/0022-247X(83)90161-0.  Google Scholar

[3]

H. Bereketoǧlu and A. Huseynov, Convergence of solutions of nonhomogeneous linear difference systems with delays,, Acta Appl. Math., 110 (2010), 259.  doi: 10.1007/s10440-008-9404-2.  Google Scholar

[4]

H. Bereketoǧlu and F. Karakoç, Asymptotic constancy for impulsive delay differential equations,, Dynam. Systems Appl., 17 (2008), 71.   Google Scholar

[5]

H. Bereketoglu and M. Pituk, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays,, Discrete Contin. Dyn. Syst., (2003), 100.   Google Scholar

[6]

J. Diblík, Asymptotic convergence criteria of solutions of delayed functional differential equations,, J. Math. Anal. Appl., 274 (2002), 349.  doi: 10.1016/S0022-247X(02)00311-6.  Google Scholar

[7]

J. Diblík, Asymptotic representation of solutions of equation $\dot y(t)=\beta (t)[y(t)-y(t-\tau(t))]$,, J. Math. Anal. Appl., 217 (1998), 200.  doi: 10.1006/jmaa.1997.5709.  Google Scholar

[8]

J. Diblík, R. Chupáč and M. Růžičková, Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^n\beta_i(t)[y(t-\delta_i)-y(t-\tau_i)]$,, Appl. Math. Comput., 221 (2013), 610.  doi: 10.1016/j.amc.2013.07.001.  Google Scholar

[9]

J. Diblík and M. Růžičková, Convergence of the solutions of the equation $\dot y(t)=\beta (t)[y(t-\delta)-y(t-\tau)]$ in the critical case,, J. Math. Anal. Appl., 331 (2007), 1361.  doi: 10.1016/j.jmaa.2006.10.001.  Google Scholar

[10]

J. Diblík and M. Růžičková, Exponential solutions of equation $\dot y(t)=\beta (t)[y(t-\delta)-y(t-\tau)]$,, J. Math. Anal. Appl., 294 (2004), 273.  doi: 10.1016/j.jmaa.2004.02.036.  Google Scholar

[11]

J. Diblík, M. Růžičková and Z. Šutá, Asymptotic convergence of the solutions of a discrete system with delays,, Appl. Math. Comput., 219 (2012), 4036.  doi: 10.1016/j.amc.2012.10.040.  Google Scholar

[12]

I. Györi and L. Horváth, Asymptotic constancy in linear difference equations: Limit formulae and sharp conditions,, Adv. Difference Equ., 2010 (7893).   Google Scholar

[13]

I. Györi, F. Karakoç and H. Bereketoǧlu, Convergence of solutions of a linear impulsive differential equations system with many delays,, Dyn. Contin. Discrete Impuls. Syst., 18 (2011), 191.   Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (1)

[Back to Top]