\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of weak solutions for non-local fractional problems via Morse theory

Abstract Related Papers Cited by
  • In this paper, we study the existence of non-trivial solutions for equations driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions. Non-trivial solutions are obtained by computing the critical groups and Morse theory. Our results extend some classical theorems for semilinear elliptic equations to the non-local fractional setting.
    Mathematics Subject Classification: 35J60, 35J91, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves and S. B. Liu, On superlinear $p(x)$-Laplacian equations in $\mathbbR^N$, Nonlinear Anal., 73 (2010), 2566-2579.doi: 10.1016/j.na.2010.06.033.

    [2]

    B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.doi: 10.1016/j.jde.2012.02.023.

    [3]

    T. Bartsch, and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.doi: 10.1016/0362-546X(95)00167-T.

    [4]

    K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997), 43-80.

    [5]

    K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys., 271 (2007), 179-198.doi: 10.1007/s00220-006-0178-y.

    [6]

    D. Bors, Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian, Abstr. Appl. Anal., (2013), Art. ID 240863, 10 pp.

    [7]

    D. Bors, Stability of Nonlinear Dirichlet BVPs Governed by Fractional Laplacian, Scientific World Journal, (2014), Art. ID 920537, 10 pp.doi: 10.1155/2014/920537.

    [8]

    C. Brändle, E. Colorado, A.de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.doi: 10.1017/S0308210511000175.

    [9]

    X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025.

    [10]

    L. Caffarelli, J. M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.}doi: 10.4171/JEMS/226.

    [11]

    L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.doi: 10.1007/s00222-007-0086-6.

    [12]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [13]

    A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10 (2011), 1645-1662.doi: 10.3934/cpaa.2011.10.1645.

    [14]

    K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0385-8.

    [15]

    S. Y. A. Chang and M. del Mar González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.doi: 10.1016/j.aim.2010.07.016.

    [16]

    M. del Mar González, Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differential Equations, 36 (2009), 173-210.doi: 10.1007/s00526-009-0225-6.

    [17]

    F. Fang, and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math. Anal. Appl., 351 (2009), 138-146.doi: 10.1016/j.jmaa.2008.09.064.

    [18]

    A. Fiscella, R. Servadei and E. Valdinoci, A resonance problem for non-local elliptic operators, Z. Anal. Anwendungen, 32 (2013), 411-431.doi: 10.4171/ZAA/1492.

    [19]

    D. Idczak and R. Kamocki, On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in $\mathbbR^n$, Fractional Calculus & Applied Analysis, 14 (2011), 538-553.doi: 10.2478/s13540-011-0033-5.

    [20]

    D. Idczak and R. Kamocki, Fractional differential repetitive process with Riemann-Liouville and Caputo derivatives, Multidim. Syst. Sign Process, (2013).doi: 10.1007/s11045-013-0249-0.

    [21]

    D. Idczak, R. Kamocki and M. Majewski, Fractional continuous Roesser model with Reimann-Liouville derivative, 8th Int. workshop on multidimensional Systems, (2013), 33-38.

    [22]

    D. Idczak, R. Kamocki and M. Majewski, On a fractional continuous counterpart of Fornasini-Marchesini model, 8th Int. Workshop on Multidimensional Systems, (2013), 45-49.

    [23]

    D. Idczak and M. Majewski, Fractional fundamental lemma of order $\alpha\in (n-\frac{1}{2}, n)$ with $n\in\mathbbN, n\geq2$, Dynamic System and Applications, 12 (2012), 251-268.

    [24]

    D. Idczak and M. Majewski, Compactness of fractional embeddings for boundary value problems, IEEE, 7 (2013), 599-603.

    [25]

    D. Idczak, A. Skowron and S. Walczak, Sensitivity of a fractional integrodifferential Cauchy problem of Volterra type, Abstract and Applied Analysis, 2013 (2013), 1-8.

    [26]

    D. Idczak, and S. Walczak, A fractional imbedding theorem, Fractional Calculus & Applied Analysis, 15 (2012), 418-425.doi: 10.2478/s13540-012-0030-3.

    [27]

    D. Idczak and S. Walczak, Compactness of fractional imbeddings, IEEE, 2 (2012), 585-588.doi: 10.1109/MMAR.2012.6347820.

    [28]

    D. Idczak and S. Walczak, Fractional Sobolev spaces via Riemann-Liouville derivatives, Journal of Function Spaces and Applications, 2013 (2013), 1-15.

    [29]

    L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbbR^N$, Proc. Roy. Soc. Edinburgh, 129 (1999), 787-809.doi: 10.1017/S0308210500013147.

    [30]

    K. Kaleta and T. Kulczycki, Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians, Potential Anal., 33 (2010), 313-339.doi: 10.1007/s11118-010-9170-4.

    [31]

    R. Kamocki and M. Majewski, On a fractional Dirichlet problem, IEEE, 2 (2012), 60-63.doi: 10.1109/MMAR.2012.6347911.

    [32]

    A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, 2010.doi: 10.1017/CBO9780511760631.

    [33]

    S. B. Liu, On ground states of superlinear $p$-Laplacian equations in $\mathbbR^N$, J. Math. Anal. Appl., 361 (2010), 48-58.doi: 10.1016/j.jmaa.2009.09.016.

    [34]

    S. B. Liu, On superlinear problems without Ambrosetti-Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.doi: 10.1016/j.na.2010.04.016.

    [35]

    S. B. Liu, Existence of solutions to a superlinear $p$-Laplacian equation, Electron J. Differential Equations, 66 (2001), 1-6.

    [36]

    J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.doi: 10.1006/jmaa.2000.7374.

    [37]

    Q. S. Liu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601.

    [38]

    G. Molica Bisci, Fractional equations with bounded primitive, Appl. Math. Lett., 27 (2014), 53-58.doi: 10.1016/j.aml.2013.07.011.

    [39]

    G. Molica Bisci, Sequences of weak solutions for fractional equations, Math. Res. Lett., 21 (2014), 1-13.

    [40]

    G. Molica Bisci and B. A. Pansera, Three weak solutions for nonlocal fractional equations, Adv. Nonlinear Stud., 14 (2014), 591-601.

    [41]

    G. Molica Bisci and D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014), 167-176.

    [42]

    G. Molica Bisci and R. Servadei, A bifurcation result for non-local fractional equations, to appear in Analysis and Applications. doi: 10.1142/S0219530514500067.

    [43]

    K. Perera, R. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p$-Laplacian Type Operatiors, Mathematical Surveys and Monographs, 161, American Mathematical Society, Providence, RI, 2010.doi: 10.1090/surv/161.

    [44]

    X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results, C. R. Math. Acad. Sci. Paris, 350 (2012), 505-508.doi: 10.1016/j.crma.2012.05.011.

    [45]

    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.doi: 10.1016/j.matpur.2013.06.003.

    [46]

    S. Serfaty and J. Luis Vazquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calc. Var. Partial Differential Equations, 49 (2014), 1091-1120.doi: 10.1007/s00526-013-0613-9.

    [47]

    R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, Contemp. Math., 595 (2013), 317-340.doi: 10.1090/conm/595/11809.

    [48]

    R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.doi: 10.4171/RMI/750.

    [49]

    R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return